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ABSTRACT: The aim of this paper is to dissect the hierarchical structures of BaTiO3 particles into primary,
secondary, tertiary, and quaternary structural levels and to thoroughly review the corresponding structure-
ferroelectricity relationships at all levels. This analytical framework is of growing importance for the fundamental
understanding of the ferroelectric properties of BaTiO3 in microelectronic devices, especially as their structural
levels are all approaching the same scale in the process of miniaturization. The identification of the most influential
structure among others and the deduction of a meaningful structure-ferroelectricity relationship depend on a
thorough understanding of the relationships.

1. Introduction

Since the discovery of BaTiO3 by Wainer and Salomon
in 1942,1 the fundamentals of its ferroelectricity have
often been related to its tertiary structure (ferroelectric
domains) by assuming both primary (ionic spacing) and
secondary (crystal lattice) structures are perfect (Table
1). Structural features of the ferroelectric domains and
their dependence on control parameters such as pres-
sure (compressive stress), p, electric fields, E, and
temperature, T, have been well-studied in a bulk
BaTiO3 crystal. Correspondingly, the cooperative effect
of these domains, which is reflected in ferroelectric
properties such as polarization, P, and lattice strain, x,
have been accounted for by the phenomenological theory
of Devonshire in 1949.2

Although Slater’s local field theory in 19503 had
shown the important role that the primary and second-
ary structures play in ferroelectricity, Devonshire’s
surface-modified phenomenological theory has been
widely used to explain the size effect of BaTiO3 particles
from a quaternary structural point of view. The BaTiO3
particle is often thought to contain two portions: a
ferroelectric core covered with a paraelectric layer
(core-shell model). However, the inconsistency of the
critical size in the literature, ranging from 15 to 200
nm in diameter,4-26 suggests that the ferroelectric

properties of BaTiO3 particles should not be a function
of the quaternary structure (Euclidean geometry) alone.
There is actually a need to reconsider the contribution
from the lower structural levels.

The aim of this paper is to review all of the above-
mentioned structure-ferroelectricity relationships at
different structural levels and to introduce the random
field theory to account for the dependence of ferro-
electricity on lattice defects occurring in primary and
secondary structures in BaTiO3 powders (Table 1). This
is of growing importance for a fundamental understand-
ing of the ferroelectric properties of BaTiO3 in micro-
electronic devices, as their structural levels are all
approaching the same scale in the process of miniatur-
ization. The identification of the most influential struc-
ture among others and the deduction of a meaningful
structure-ferroelectricity relationship depend on a
thorough understanding of the relationships. Addition-
ally, the analytical framework of dissecting BaTiO3
particles into structures at different levels in this paper
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Table 1. Structure-Ferroelectricity Relationships of
BaTiO3

level structure
structure-ferroelectricity

relationship

primary perfect ionic spacing Slater local field
primary impurities random field
secondary perfect crystal lattice Slater local field
secondary lattice defects random field theory
tertiary ferroelectric domains Devonshire phenomenological
quaternary particle size

(core-shell)
surface modified Devonshire
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may be extended to other related hierarchical struc-
tures, such as BaTiO3 grains and thin films, to reconcile
the contradiction in the effects of grain size27-30 and the
inconsistency of the effects of thickness,31 respec-
tively.

2. Ferroelectric Domains

There are two kinds of ferroelectric domains, 90 and
180°. They are mechanical twins associated with the
tetragonal phase occurring about the {101} and {100}
planes, respectively. The domains are produced by phase
transitions as the mechanism for the strain release and
by the depolarization field as the reduction of electro-
static energy.32-34 The 90° walls are all {101} planes.
They are the boundaries of two domains that are
polarized at 90° to each other. The 180° walls are all
{100} planes, and they are the boundaries between
domains with antiparallel polarization.35

Although the internal symmetry of the BaTiO3 crystal
is tetragonal at room temperature, it is a composite of
ferroelectric domains separated by the twin bound-
aries.33 Only a very small number of truly single BaTiO3
crystals are observed, invariably in the form of very thin
flakes or needles. X-ray photographs of such crystals
oscillated about any cube axis show a repeat distance
of ∼4.0 Å. Since a ) 3.9932 ( 0.0002 Å and c ) 4.0341
( 0.0003 Å, this indicates that all the component twins
lie with c axes parallel to one of the cube axes of the
crystal.33 A BaTiO3 crystal exhibiting complex twinning
is shown in Figure 1.33 In contrast to the (111) twins,
ferroelectric twins may easily be changed through local
heating of a thin section with an electron beam in an
electronic microscope.32

2.1. Domain Wall Thickness. The wall thickness,
N, may be calculated from the minimum of the total wall
energy density, σW, with respect to N. σW is the sum of
the dipole-dipole interaction, σdip, and the contribution
from the anisotropy, σanis

35

where C33 ) elastic constant, ZZ ) the spontaneous

strain at room temperature, and a ) lattice constant.
N becomes35

This indicates that the wall thickness in BaTiO3 is
extremely small, on the order of 1 to a very few lattice
constants.

2.2. Domain Size. The domain size in ferroelectric
materials is a state of equilibrium between the energy
of the domain walls and the energies of those electric
and elastic fields, which are caused by spontaneous
polarization and strain.34

Artl, Hennings, and de With29 approximated the
equilibrium size of the 90° domain, d, by the minimum
in the sum mainly of the domain wall energy and the
mechanical field energy. They assumed that the multi-
domain BaTiO3 crystal is clamped by its surroundings
so that it cannot expand freely (Figure 2). They obtain

with the spontaneous strain,34 SS, during the cubic-to-
tetragonal transition

where a and c ) lattice constants, C11 ) average
longitudinal elastic constant, g ) crystal size, and σ )
domain wall energy.

On the other hand, Shih and Aksay36 assumed that
the multidomain BaTiO3 crystal is stress-free and only
took the depolarization energy and the space-charge
layers into account (Figure 3) and estimated the equi-
librium size of the 180° domain, D, by the minimization

Figure 1. Diagram of simply twinned crystals of BaTiO3

showing the twin boundaries. Short arrows indicate the c
direction of the individual components.33
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Figure 2. Cubic-shaped grain split into 90° domains, embed-
ded in an isotropic dielectric medium. If the grain is free (not
clamped), it is distorted, as shown by dashed lines. The circle
indicates the region of elastic energy in the upper half with
compressive stress, c, and in the lower half with tensile stress,
t.29

Figure 3. (A) Space-charge layer having a thickness of t with
uniform charge distribution. (B) Cubic crystal of size L with
domains of alternating polarization separated by 180° domain
walls. The domain width is D.36
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of the free energy density F(P,D,L) with respect to D.
They obtained

with D ) the 180° domain width, γ ) domain wall
energy, P ) polarization, L ) the size of the crystal,
and t ) space-charge layer thickness ranging from 102

to 104 Å.

3. Control Parameters

The crystallographic directions of ferroelectric do-
mains may be altered by three parameters: pressure,
electric fields, and temperature.

3.1. Pressure. If a unidirectional pressure is applied
along the y axis of a well-formed crystal, the [001] and
[100] twins grow in volume at the expense of the [010]
twins by a migration of the twin boundaries in a
direction perpendicular to their own plane. The bound-
aries become progressively less numerous until the
whole crystal is a composite of [001] and [100] twins
only (Figure 4).33

A pressure (compressive stress) may only rotate the
polar direction by 90°, and it results in a large strain.37

Domain walls grow as spikes35,37 or wedges.33,38 If a
spike is taken to be a lamina with thickness w and
length L, the minimum stress, σ0, needed to induce 90°
domain spikes under compressive stress is37

where Γ90 ) the 90° domain wall energy and γS )
spontaneous strain. The forward velocity, V, induced by
the stress field, σ, is37

with M ) the domain wall mobility ) 4.8 × 10-4 m3/s
N.

As the temperature of the crystal is increased, it
becomes more susceptible to applied pressures. Above
the Curie temperature, TC, when the crystal is normally
isotropic (cubic), small pressures will make it anisotropic
(tetragonal). Therefore, it should be possible to produce
single crystals from twinned crystals by simultaneous
pressure along the x and y directions, especially if the

crystals are at the same time cooled slowly through the
Curie temperature.33

Samara39 has shown that the inverse proportionality
between TC and pressure, p, suggests that the uni-
directional pressure should decrease the TC value of a
single BaTiO3 crystal (instead of raising it as Kay
alleged originally33). The inverse relationship of TC and
p has been verified by experiments and by the negative
value of the cubic-tetragonal phase transition volume
change, ∆V, in the Clausius-Clapeyron equation39,40

with ∆S ) the entropy change, Q ) cubic-tetragonal
phase transition latent heat, and ∆V ) -0.062 Å3/unit
cell. Consequently, pressure favors the smaller volume,
a stabilization of the cubic phase, or a decrease in TC.

3.2. Electric Fields. If electric fields are applied
along the y direction between opposite cube faces of a
well-formed crystal, [001] twins grow in volume at the
expense of the [100] and [010] twins by a migration of
the twin boundaries in a direction perpendicular to their
own plane.33 Unlike the effect of a unidirectional pres-
sure, an electric field may rotate the polar direction by
either 90 or 180°. A 180° polar rotation does not result
in any strain.37

The minimum electric fields, E0
90 and E0

180, needed
to drive 90 and 180° domain spikes are37

with Γ90 ) 90° domain wall energy, Γ180 ) 180° domain
wall energy, PS ) spontaneous polarization, and w )
domain thickness. The forward velocities, V90 and V180,
of 90 and 180° domain spikes induced by the electric
fields, E0

90 and E0
180, are

with M ) the domain wall mobility ) 4.8 × 10-4 m3/s
N.

The stronger the field, the more effective the aligning
process is. A complete saturation may be obtained in
the case of a twinned crystal. This may result in a single
domain crystal whose c axis becomes completely ori-
ented in a direction parallel to the applied field, and all
the twin boundaries disappear. The voltage required for
saturation depends on the complexity of the specimen
and the time of application of the field. A typical value
is around 15 000 V/cm.33 When the field is completely
reduced to zero, the crystal may remain perfectly single
if complete saturation was previously achieved, but
more often partial relaxation of the orientation occurs,
although the crystal never returns completely to its
original twin configuration.33 Slow relaxation of the
crystal can be achieved by keeping it in a closed

Figure 4. Diagrams (from left to right) showing the effect of
unidirectional pressure on BaTiO3 crystals.33
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electrical circuit.33,36,41 In addition, slow reversal of the
field usually allows some [001] twins to appear. Increas-
ing the frequency to 50 cycles/s renders the crystal much
more opaque, owing to the decrease in domain size and
the increase of relative proportion of boundary material.
The boundaries are seen to be in a state of violent
agitation. The stress involved with high voltages often
crack the crystal in an irregular way, which does not
obviously conform to single crystallographic directions.33

The application of a strong field, E, raises the Curie
temperature42, TC, in accordance with a linear relation-
ship40

with ∆S ) the entropy change, Q ) cubic-tetragonal
phase transition latent heat, and ∆P ) the discontinu-
ous jump of the spontaneous polarization, PS, at TC upon
heating () 0 - PSC ) -PSC).

Consequently, Merz42 has observed that at tempera-
tures higher than TC (>T2), the cubic crystal is para-
electric (nonferroelectric) and the P-E plot gives a
straight line, where T2 ) TC + 11.7 °C.43 At lower
temperatures, (TC > T > T2), the material can be driven
to the ferroelectric state when a strong enough field,
ECRIT, is applied, which gives a double-hysteresis P-E
loop. At temperatures near TC, however, these two loops
overlap. The temperature dependence of the P-E plot
is shown in Figure 5.42 Using thermodynamics, the
phenomenological representation of the P-E plot as a
function of temperature can be expressed as42

where

with P ) electrical polarization; â, B, and C ) constants,

and T0 ) extrapolated temperature of the reciprocal
dielectric constant plot of 1/ε(T), where T0 = TC - 7.7
°C.43 The plot of eq 14 is shown in Figure 5.42

In general, PS can be obtained by extrapolation of the
P-E curve back to the ECRIT ordinate.40 Since the P-E
plot is a straight line at temperatures >T2, PS ) 0
regardless of the strength of the applied field. At lower
temperatures, TC > T > T2, PS decreases as ECRIT
increases. At TC, PS ) PSC and ECRIT ) 0. Figure 5 shows
that, once below TC, PS increases (with ECRIT ) 0) as T
decreases. We will discuss the P-E plot in greater
details in section 4.

3.3. Temperature. Kay33 has found, as shown in
Figure 6,33 that as the BaTiO3 crystal plate is slowly
heated near the TC, the twin boundaries often become
slightly curved. They no longer conform exactly to
simple crystallographic directions. The small amounts
of [001] tetragonal twins have the a-cell dimensions
parallel to the thinnest dimension of the plate and are
able to expand as TC is approached. However, the large
[100] twins have both a and b cell dimensions in the
plane of the crystal plate, and the necessity for their
expansion opposes the tetragonal-cubic transition. This
will result in stress restricting the transition of neigh-
boring portions of the [100] tetragonal component. Some
of the boundaries begin to migrate irregularly through
the crystal. This explains the temperature range of the
tetragonal-cubic transition from 108 to 117.5 °C. This
also results in the reorientation from [100] to [010] and
[001] directions. These patches with “dislocations” or
“faults” become smaller and fainter and eventually
disappear, leaving the crystal completely isotropic (cu-
bic) at TC.

Figure 5. Plot of the function 2p5 - 4p3 + 2pt ) e.42
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Figure 6. Appearance in a thin plate of BaTiO3 at different
temperatures.33
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When it is cooled, the crystal returns to a composite
of tetragonal twins whose arrangement usually varies
after each cycle. The more rapid the cooling is, the
greater the complexity will be. Slow cooling alone,
however, has rarely produced truly single tetragonal
crystals. This is probably due to strain centers resulting
from local lattice imperfections characteristic of each
individual crystal. Since the decrease in temperature
and the strain effects tend to cooperate and produce the
anisotropic (tetragonal) phase, the temperature range
of the cubic-tetragonal transition should be less than
the case of raising temperature. It is found to be from
114.8 to 109.8 °C.

The value of c/a, as determined by the X-ray diffrac-
tion, decreases as the temperature increases due to the
contraction of c and the expansion of a (b ) a) near the
tetragonal-cubic phase transition. The relation between
cell parameters and temperature for a single BaTiO3
crystal is demonstrated in Figure 7.33 At the transition,
TC, the tetragonal parameters are a ) 4.0051 ( 0.0008
Å and c ) 4.0206 ( 0.0007 Å and the cubic parameter
is a ) 4.0096 ( 0.0002 Å (a ) b ) c). It should be noted
that the TC value of crystal BaTiO3 is different from that
usually stated for powder materials, as shown in Figure
8.9 This may result, for example, either from composi-
tional differences44,45 or from the intense strain effects
inherent in polycrystalline aggregates produced by the
powder-sintering process.29,46

4. Ferroelectric Properties and Devonshire’s
Theory

There are five main ferroelectric properties of
BaTiO3: (i) the ferroelectric polarization-electric field
(P-E) loop for a multidomain BaTiO3 crystal, (ii)
polarization of BaTiO3 as a function of temperature for
a single-domain BaTiO3 crystal (P-T curve), (iii) the
temperature dependence of dielectric constants for small
fields of a single-domain BaTiO3 crystal (ε-T plot), (iv)
the temperature dependence of the spontaneous strain
for a single-domain BaTiO3 crystal (unit cell parameters

vs T plot), and (v) the stress dependence of the dielectric
constant for fine grained BaTiO3 ceramics (ε-σ curve).
All these experimental observations can be interpreted
by a thermodynamic model, namely, the phenomeno-
logical theory of Devonshire.2 This approach, however,
is a purely macroscopic and does not describe the atomic
displacements, which accompany the process of polar-
ization and the switching of a ferroelectric. Also, it is
only valid for the equilibrium properties and does not
apply to nonequilibrium conditions, which occur, for
example, during the switching of a ferroelectric.43

The standard procedure of Devonshire’s theory is to
expand the free energy function in terms of certain
independent variables, such as polarization and stress,
to use certain measured properties of the crystal to
determine coefficients, and then to predict other proper-
ties. It is always possible to describe the experimental
results by adding as many terms to the expansion as
necessary. The difficult point, however, is to explain the
experimental facts with the smallest number of expan-
sion coefficients possible and on the basis of the most
reasonable assumptions.40

4.1. Polarization vs Electric Field (P-E Loop).
BaTiO3 crystals are generally comprised of multiple
ferroelectric twins. The consequences are manifested in
the characteristic hysteresis P-E loop. The ferroelectric
hysteresis loops can be directly observed on a cathode
ray oscilloscope,35,40,42,47 and the hysteresis loop is shown
schematically in Figure 9.40

Consider the simplest case of a crystal below TC with
electrodes perpendicular to the polar axis and consisting
of an equal number of positive and negative domains.
The domains are antiparallel with respect to some given
crystallographic direction so that only the inversion of
180° domains is involved. When the electric field, E, is
increased in the positive direction, the positive domains
grow with an average velocity35 of the order of (1-5) ×
104 cm/s and at the expense of the negative domains.
The polarization, P, increases very rapidly (OA) (Figure
9) and reaches a saturation value (BC) when all domains
are aligned in the direction of the field. This means that
now the crystal has a “single domain” structure. When
the field is reduced to zero again, a few domains remain
aligned. At zero applied field, E ) ECRIT ) 0, and below
TC, a finite value of the polarization can be measured,
called the remnant polarization, Pr (OD). Extrapolation
of the linear portion BC of the hysteresis loop back to
the polarization axis, where E ) ECRIT ) 0, yields the
value of the spontaneous polarization, PS (OE). It
corresponds to the saturation polarization with all
dipoles aligned in parallel.48 To annihilate the remnant
polarization, Pr, we must apply an electric field in the
opposite (negative) direction. The field needed for this
purpose is called the coercive field, EC (OF). Upon
further increase in the field in the negative direction,
uniform alignment of the dipoles can again be achieved,
this time in the direction opposite to the previous one
(GH).

The temperature dependence of hysteresis loops is
demonstrated in Figure 5 and described by eqs 14-17.

Merz42 has used the phenomenological theory pro-
posed by Devonshire2 to explain the general character-
istics of the ferroelectric hysteresis loop. The differential
dU of the internal energy of a body subject to external

Figure 7. Relation between cell parameters and temperature
for a single crystal of BaTiO3. The cube root of the cell volume
is shown for the tetragonal phase. The tetragonal and cubic
phases coexist in the shaded region.33

Review Crystal Growth & Design, Vol. 1, No. 5, 2001 405



stress and electric fields is43

where S ) entropy, T ) temperature, xi ) strain, Xi )

stress components, EB ) electric field, and PB ) polariza-
tion. Since the elastic Gibbs function is43

Figure 8. Change in lattice constants with temperature (heating run): (A) hy, virgin, D ) 0.12 µm; (B) hy, at 400 °C,
D ) 0.12 µm; (C) hy, at 600 °C, D ) 0.14 µm; (D) hy, at 800 °C, D ) 0.16 µm; (E) co, at 900 °C, D ) 0.18 µm; (F) co, at
1000 °C, D ) 0.22 µm; (G) co, at 1050 °C, D ) 0.30 µm; (H) ss, at 1100 °C, D ) 1.0 µm.9 Particles are prepared by three
processes, hydrothermal (hy), coprecipitation (co), and solid-state reaction (ss), and their diameters, D, are grown to a larger size
by firing.

dU ) TdS - ∑
i ) 1

3

Xi dxi + EB‚dPB (18)

G ) U + ∑
i

Xixi - TS (19)
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hence, as follows from eq 19

Assuming the stress, Xi, to be constant, we can expand
G in powers of the polarization, P, where the coefficients
are functions of temperature43

Terms in odd powers of the polarization components are
omitted because we want the free energy function to be
the same for reversal of the signs of any of the polariza-
tion components.40 The first coefficient, â(T - T0), is a
linear function of temperature. Its significance and the
constants â and T0 will be explained in section 4.3. The
second coefficient of eq 21, -B, is negative, and it
describes BaTiO3 with a phase transition of the first
order, which is distinguished by a discontinuous change
of the saturation polarization at the transition temper-
ature (see section 4.2). If the polar axis is aligned with

electric fields along the z direction, we have Px ) 0, Py
) 0, and Pz ) P. Equation 21 is simplified to43

where G0, the free energy for zero polarization, is often
equated to zero.43 Differentiating eq 22 with respect to
P gives the following equation for the electric field, E,
acting on a ferroelectric, in terms of the polarization, P

The nonlinear relationship of the E-T plot can be
expressed by eq 23, which can be simplified to eqs 14-
17.42

4.2. Polarization vs Temperature Curve (P-T
Curve). Below TC, the regular hysteresis loop is ob-
tained as shown in Figure 9. The value of the spontane-
ous polarization, PS, can be determined by measuring
the distance OE, where E ) ECRIT ) 0, on the observed
loop on a calibrated screen of the cathode ray tube.42 It
is also possible, of course, to determine the temperature
dependence of the spontaneous polarization, PS, of the
ferroelectric crystal, by observing the change of the
distance OE as a function of the temperature of the
crystal. Near TC, the hysteresis loop splits into two
smaller loops because the crystal becomes ferroelectric
only when under the influence of a high electric field.42

PS is now obtained by extrapolation of the linear portion
of the hysteresis loop back to the ordinate axis, where
E ) ECRIT * 0. At higher temperatures, the double-
hysteresis loop collapses into a straight line passing
through the origin. The crystal is paraelectric, and at
no part of the cycle is the electric field high enough to
shift TC enough to make it ferroelectric.42 PS is equal to
0 regardless of the magnitude of E. The P-T plot is
illustrated in Figure 10.42

The TC value and the corresponding value PSC of the
spontaneous polarization can be calculated from eq 22
by imposing that the free energy of the polar phase, G,
and the nonpolar phase, G0, are equal, which leads to43

Figure 9. (A) Hysteresis loop of a good BaTiO3 single crystal
at 60 cps. (B) Ferroelectric hysteresis loop (schematic). OE )
spontaneous polarization Ps; OF ) coercive field strength Ec.40

dG ) -SdT + ∑
i ) 1

3

xidXi + EB‚dPB (20)

G ) â(T - T0)(Px
2 + Py

2 + Pz
2) - B(Px

4 + Py
4 + Pz

4) +

C(Px
6 + Py

6 + Pz
6) + D(Py

2 Pz
2 + Pz

2 Px
2 + Px

2 Py
2) + ... +

G0(T) (21)

Figure 10. Spontaneous electrical polarization Ps vs temper-
ature T.42

G ) â(T - T0)P
2 - BP4 + CP6 + G0 (22)

∂G
∂P

) E ) 2â(T - T0)P - 4BP3 + 6CP5 (23)

G - G0 ) â(TC - T0)PSC
2 - BPSC

4 + CPSC
6 ) 0 (24)
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Near TC, PS can still occur with E ) ECRIT ) 0 and eq
23 becomes43

PSC
2 and TC can be obtained by solving eqs 24 and 2543

For BaTiO3, PSC ) 17.5 µC/cm2 and TC ) T0 + 7.7 °C.43

For PSC
2 to be real in eq 26, the coefficient of the P4

term has to be negative: that is, -B. It describes a
ferroelectric with a transition of the first order in which
the change from the ferroelectric to the paraelectric
state is accompanied by a discontinuous change49 of the
saturation polarization PS at TC, namely PSC.

The three portions of the P-T plot: the cubic (para-
electric) state, the phase transition, and the tetragonal
(ferroelectric) state, may be represented by the following
equations.2

For a cubic state (> TC)

At the phase transition (∼TC)

For a tetragonal phase (< TC)

and

where Pz ) P. As the temperature, T, falls, the magni-
tude of the polarization, P, increases. This is well
demonstrated by Figure 10.42

4.3. Dielectric Constant vs Temperature (E-T
Plot). Well above TC, in the paraelectric state, the
relation between polarization, P, and field, E, is linear;42

therefore, the dielectric constant is field-independent.2
In the ferroelectric region, however, the existence of a
hysteresis loop clearly demonstrates that the value of
the dielectric constant depends on the field strength
with which it is measured. If the applied field, E, is very
small, no new domains are created, and no movement
of the domain boundaries takes place. In this case, one
measures the dielectric constant of the crystal with no
interference from the domain structure. This quantity,
which is called the initial dielectric constant,40 is directly
proportional to the slope of the virgin curve OA in
Figure 9B at the zero point. It is this constant to which
we refer when we speak of the dielectric constant, ε, of
a ferroelectric crystal.

When a crystal plate is cooled below TC, it normally
shows a rather complicated domain structure. Measure-
ment with a small, applied field perpendicular to the
major surfaces would furnish an average dielectric
constant whose value would depend on the relative ratio
between numbers of c domains and a domains. To avoid
this confusion, Merz selected, at room temperature, a
single-domain plate grown by Remeika’s method50 with
the c axis perpendicular to the major surfaces for the
measurement of εc; for the measurement of εa, he
selected a single-domain plate with the c axis in the
major surfaces.40 Figure 11 gives the plot of the dielec-
tric constants εa and εc as functions of temperature
determined by Merz.47

In the high-temperature region above TC, where the
crystal has cubic symmetry, the dielectric constant, ε,
is independent of direction40,47

The dielectric constant of an isotropic or cubic medium

Figure 11. Dielectric constants εa and εc as a function of temperature.47

ε ) εa ) εc (33)

∂G
∂P

) E ) 2â(TC - T0)PSC - 4BPSC
3 + 6CPSC

5 ) 0
(25)

PSC
2 ) -

(-B)
2C

(26)

TC ) T0 + B2

4âC
(27)

Px ) Py ) Pz ) 0 (28)

Px ) Py ) 0 (29)

P ) Pz ) PSC (30)

Px ) Py ) 0 (31)

∂
2G

∂Pz
2

) 2â(T - T0) - 12BPz
2 + 30CPz

4 ) 0 (32)
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relative to vacuum is defined in terms of the macroscopic
field,49 E

where

with ε0 ) the permittivity (dielectric constant) of a
vacuum, ø ) the susceptibility at constant stress X, and
ø′ ) the reciprocal susceptibility at constant stress X.

Since ø′ is also defined by

and at high temperatures above TC the polarization, P,
in eq 23 becomes very small, ø′ can hence be ap-
proximated as43

In accordance with eqs 34 and 37, the dielectric con-
stant, ε, is linearly related to the slope of the P-E loop

or

Equation 39 is the Curie-Weiss law, valid in the cubic
paraelectric region, where the P-E curve becomes a
straight line with a slope,42 which can be approximated
as a function of temperature, T.43 The Curie constant,
2â, can be determined by the slope of the 1/ε vs T plot,
and the Curie-Weiss temperature, T0, can be assessed
accurately by extrapolating the linear dependence to the
T axis.42,51

However, in the temperature regions below TC, where
the tetragonal crystal has less symmetry, the dielectric
constant is no longer independent of direction. Also, the
relation between field and polariztion is no longer
linear.2 To generalize the calulations, we will apply the
same convention to both cubic and tetragonal phases.
Since ε is related to ø′ by eq 34, and ø′ is defined as

where r ) x, y, and z directions. From eqs 21, 34, and
40, the two regions of the ε-T plot can be represented
by eqs 42, 44, and 45. For the cubic phase2

Equation 37 becomes eq 42 when T > TC. For the

tetragonal phase2

Above TC, in the cubic structure, the Ti4+ ions oscillate
about the centers of the TiO6 octahedra without effective
mutual coupling, but with large dipole moments, be-
cause the Ti4+ ion has a tendency to change from ionic
to covalent bonding as its distance to an atom de-
creases.37 At TC, both ionic and electronic polarizability
reach peak levels, and the dielectric constant (ε ) εc )
εa) reaches a very high value of about 10 000.47,52

Harwood et al.53 attributed the peak to a finite time
transition between the cubic and tetragonal phases,
resulting in instantaneous permittivities corresponding
to those of the separate phases at temperatures at which
they would not exist or would already be admixed with
the other phase. Below TC, the interaction between
dipoles overcomes the thermal agitation. The high
polarizability of the O2- ions results in the highly
charged Ti4+ ions taking up a mean position closer to
one of the O2- ions in each octahedron. The Ti4+ ions
are locked in an eccentric position displaced toward one
of the six oxygen neighbors.38 Within small volumes,
domains and all the Ti4+ ions are displaced in the same
direction, resulting in the formation of a polar c axis
and converting the structure from cubic to tetragonal.
Thus, for two out of the six O2- ions, the electronic and
ionic polarizabilities are reduced by the interaction with
Ti4+ ions. As a consequence, the dielectric constant in
the polar c direction, εc, is on the order of a few hundreds
at room temperature and is much smaller than the
dielectric constant in the a direction, εa, which on the
order of several thousands. This also means that ions
and electrons are easier to move in the a direction per-
pendicular to the polarization under an electric field.38,40

Using Merz’s crystal, Matthias and von Hippel38 have
also constructed similar plots of dielectric constant vs
T in the (100), (010), and (001) directions.

4.4. Unit Cell Parameters vs Temperature (c-
or a-T Plot). The ionic displacements also result in a
change in lattice dimensions. This is demonstrated in
Figure 12.54 Above TC, the BaTiO3 crystal has a simple
cubic array of corner-sharing TiO6 octahedra with
barium ions filling the holes between.52 At the cubic-
tetragonal transition near TC, there is an expansion in
the direction of the Ti4+ displacements and a contraction
in perpendicular directions. The cubic parameter is a
) b ) c ) 4.0096 ( 0.0002 Å, and the tetragonal
parameters are a ) b ) 4.0051 ( 0.0008 Å and c )
4.0206 ( 0.0007 Å.33 The atomic displacements are
oscillations about a nonpolar site; after a displacive
transition,52 the oscillations are about a polar site.49

Since there are six possible equilibrium positions for the
Ti4+ ion in each TiO6 octahedron to shift to, if there are
N unit cells in the crystal, statistically, there would be
the large number of 6N possible polar complexions.52

To study the strain which accompanies spontaneous
polarization, Devonshire2 expressed the Helmholtz free

ε )
ε0E + P

ε0E
) 1 + ø ) 1 + 1

ø′ (34)

ø ) 1
ø′ ) P

ε0E
(35)

ø′ ) ∂E
∂P

(36)

ø′ ≈ ∂E
∂P

≈ 2â(T - T0) (37)

ε ≈ ∂P
∂E

≈ 1
2â(T - T0)

(38)

1
ε

≈ 2â(T - T0) (39)

ø′r ) ∂E
∂Pr

) ∂
2G

∂Pr
2

(40)

Px ) Py ) Pz ) P ) 0 (41)

ø′r ) ø′y ) ø′y ) 2â(T - T0) ≈ 1
ε

(42)

Px ) Py ) 0 (43)

ø′x ) ø′y ) 2â(T - T0) + 2DPz
2 ≈ 1

εa
(44)

ø′z ) 2â(T - T0) - 12BPz
2 + 30CPz

4 ≈ 1
εc

(45)
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energy, A, as a function of strain, xi, and polarization,
P. Since

Substituting eq 18 into eq 46, eq 47 becomes

Let A0(T), the free energy of the unpolarized cubic
crystal, be zero. Also, the components of the stress are
given by the equation

By assuming the three components of stress, Xx, Xy, and
Xz, to be zero, three relations between strain and
polarization are obtained. Solving these equations for
the strain in terms of the polarization gives

For a cubic phase, Pz ) 0, and eqs 50 and 51
become

Therefore, the temperature dependence of the cubic
lattice3 is purely due to the volume coefficient of
expansion of 3 × 10-5 unit. For a tetragonal phase, Pz

is aligned with the electric field along the z direction;
thus, eqs 50 and 51 apply. Since Pz is a function of T
according to eq 32, and the strains are40

with a, b, and c being the lattice parameters and ∆ the
change, the unit cell parameters vs T plot can now be
represented by eqs 50-53.

4.5. Dielectric Constant vs Stress (E-σ Curve).
Buessem, Cross, and Gaswami27 proposed that the
internal stress in fine-grained materials must be greater
than that in coarse-grained ceramics because, as the
grain size decreases, the grain size becomes compar-
able with the domain wall thickness so that the num-
ber of the stress-relieving 90° domains decreases. Under
this condition, grain boundaries would contribute ad-
ditional pinning points for the moving walls. The
internal stress in fine-grained materials is believed to
give rise to a high dielectric constant. This view is
verified by using Devonshire’s phenomenological theory2

as applied to ferroelectrics in eq 21. The free energy of
the system was expanded in terms of polarization and
the electrostrictive coupling terms between stress and
polarization

where Xx, Yy, and Zz ) normal stress components, Xy,
Yz, and Zx ) shear stress components, s11, s12, and s44
) elastic compliances, Px, Py, and Pz ) components of
polarization, Q11, Q12, and Q44 ) electrostrictive coef-

Figure 12. Variation of cell parameters with temperature in BaTiO3 crystals.54
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ficients, and A, B, C, D, and G ) coefficients of free
energy function. The dielectric constant expressions
were given by

For spontaneous polarization

From eq 57, Pz can be solved for any given values of
stresses. With this Pz and for the same stress values,
the dielectric constant may be calculated from eqs 55
and 56. This is illustrated in Figure 13.27

Samara39 observed that, for single BaTiO3 crystals,
the dielectric constant in the immediate vicinity of the
peak increased by 50-60% under 15 kbar of pressure
(Figure 14). However, for the ceramic sample, it de-
creased by over 50% for the same pressure range (Figure
14). He related this striking difference to the pressure
dependence of the dielectric constant along the a axis,
which had not been measured. For the single crystals,
ε was measured along the c axis. Since this axis
decreased with pressure at a faster rate than the a axis,
pressure might switch some c domains to a domains and
increase the number of a domains along the c direction,
thus leading to a higher εc (lower εa). In ceramics, of
course, it was the average value of ε that was measured.

5. Local Field Theory

Although Devonshire’s phenomenological theory2,43

has been very useful in describing the essence of

ferroelectricity through the correlation of the free energy
of a ferroelectric crystal, G, as a function of polarization,
P, with “macroscopic parameters” of â(T-T0), -B, C, D,
and G0(T)

atomic model theory is needed to link the macroscopic
parameters with the microscopic structures. Slater’s
local field theory3,55 provides the connection by comput-
ing the exact local Lorentz field, not assuming spherical
symmetry but taking account of the precise crystal
structure.

The value of the local field that acts at the site of the
atom, Elocal, is related to the value of the macroscopic
electric field, E, by49

where

where E0 ) field produced by fixed charges external to
the body, E1 ) depolarization field from a surface charge
density n‚P on the outer surface of the specimen
(electrodes), E2 ) Lorentz cavity field (field from polar-
ization charges on the inside of a spherical cavity cut
(as a mathematical fiction) out of the specimen with the
reference atom as center), and E3 ) field of atoms inside
the spherical cavity.

For a spherical cavity,49 the Lorentz cavity field, E2,
is P/3ε0, where P ) the polarization and ε0 ) permit-
tivity. E3 ) 0 when the elementary particles are neutral
without permanent dipole moments or when they are
arranged either in complete disorder or in cubic or

Figure 13. Variation of average permittivity with stress for
fine-grained barium titanate.27

1
ε0εa

) 1
ε0εxx

)
∂

2G1

∂Px
2

(55)

1
ε0εc

) 1
ε0εzz

)
∂

2G1

∂Pz
2

(56)

E ) 0 ) ∂G
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Figure 14. Temperature dependence of the dielectric constant
of single-crystal BaTiO3 measured along the c axis at various
hydrostatic pressures.39
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similar highly symmetrical arrays.56 Equation 58 be-
comes

This is the Lorentz relation that bridges the local
property to the macroscopic property.

The polarization of a crystal may be expressed ap-
proximately as the product of the polarizabilities, R, of
the atoms times the local electric field, Elocal

where N ) number of atoms per unit volume ) 1/υ with
υ ) the volume of a unit cell. The polarizability, R, is
an atomic property49,56,57

with Re ) electronic polarizability, Ri ) ionic polariz-
ability, Rd ) dipolar polarizability and Rs ) space charge
polarizability. They are related to the frequency of the
external field as shown in Figure 16.57

The dielectric constant, ε, is defined as the ratio of
the permittivity constant of a dielectric material, ε′, to
the permittivity of a free space,48 ε0

where the total electric flux through a dielectric mate-
rial, ε′E, is the sum of the electric field through free
space, ε0E, and dipole charge, P. Equations 63 and 64
can be rearranged into eq 34. Equation 64 gives the
definition of polarization.

Using eq 61 to find an expression of P/E and
substituting that into eq 34, we get the Clausius-
Mossotti equation3

The dielectric constant, ε, must approach infinity when
the polarizability term of the denominator, R/ε0υ,
approaches 1. Obviously, this is bound to happen at a
critical or Curie temperature T0, when permanent dipole
moments, µ, contribute a dipole (orientation) polariz-
ability, Rd

This equation is based on several assumptions.58 Mol-
ecules carrying a permenant dipole moment suffer a
torque in an electric field that tends to align the dipole
axis in the field direction. Thermal agitation, on the
other hand, tends to maintain a random distribution.
The outcome of these counteracting influences is a
Boltzmann statistical equilibrium that can be calculated
without reference to the actual rotation of the molecules
and their interaction as long as the electric field changes
so slowly that the equilibrium is reached with certainty.

Forgetting about the deformation polarization, we
may replace R by Rd in eq 66 and obtain59

where

Equation 67 is the famous Curie-Weiss law of ferro-
magnetism, here derived for permanent electric instead
of magnetic dipole moments. It predicts the spontaneous
polarization (or magnetization) of dielectrics containing
such moments.

Actually, a Mosotti-type catastrophe (R/ε0υ ) 3)
happens only under very special conditions. The reason
is that permanent electric dipole moments are anchored
in molecular groups that tend to lose their freedom of
orientation in condensed phases through association and
steric hindrance. Even if these groups could rotate like

Figure 15. Temperature dependence of the dielectric constant
of pure ceramic BaTiO3 at various hydrostatic pressures.39

Figure 16. Frequency response of the dielectric constant.57
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spheres in a medium of high friction, the Clausius-
Mosotti formula would not apply, since the reference
molecule in the spherical cavity is not a mathematical
point but is itself a dipole carrier. As soon as the cavity
is visualized as a molecular sphere in which a math-
ematical dipole is centered, calculations carried through
by Onsager60 show that spontaneous polarization does
not occur.

In Osager’s treatment, the surroundings of the dipole
are still considered as a continuum. An improved model
of Kirkwood61 visualizes the dipole molecule with its
first layer of neighbors as a structural unit, known in
its statistical arrangement from X-ray patterns. The
behavior of such a molecular island, floating in a
dielectric continuum, is examined for static fields; the
permittivities thus found are in fair agreement with
experiment. To obtain still better results, the molecular
island is extended to include the second nearest neigh-
bors, but the mathematical problem becomes increas-
ingly formidable.

Although eqs 65 and 67 are primitive, their general
forms are sacrosanct in the field of ferroelectricity in
describing the ferroelectric behavior. Theories have been
developed to modify and to relate them to the micro-
scopic structures of ferroelectrics. In Slater’s local field
theory,3 R is treated as Re + Ri in eq 70, the Lorentz
factor of 1/3 is substituted by -C4/C3 in eq 71 based on
the exact lattice structure of BaTiO3, and R is deter-
mined to be a function of temperature, T, in eq 88.

Since each unit cell in the BaTiO3 crystal contains
five ions, Slater3 proposed that the local field, Elocal, in
eq 60 should be modified to the local fields exerted at
the position of each ion, by the lattices of the dipoles of
all types of ions

with Oa ) type a oxygen atoms that lie along the same
line of the polarization axis, Ob1 and Ob2 ) the two type
b oxygen atoms that are at the right angles to the
polarization axis, p ) 0.690, and q ) 2.394. The values

of p and q are related to the local field exerted at various
points through the lattice by a lattice of dipoles whose
polarization is unity, polarized along the z direction.
Similarly, eq 61 becomes

where R ) electronic polarization and R′ ) ionic
polarization. Combining eqs 69 and 70 to get a total
P/E, substituting it into eq 34, and letting Xj ) Rj/ε0υ
and Xj′ ) Rj′/ε0υ for species j, the Lorentz correction
for the dielectric constant, ε, becomes

where

Equation 71 can be reduced to eq 65 when XTi, XBa, and
XO are all zero. In that case, c1 ) 0, c2 ) c3 ) 1, and c4
) -1/3, so that the only polarization comes from the ionic
displacement of the Ti4+ ion, X′Ti. The free energy of Ti4+

ions in a nonlinear field will now be considered. Let the
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potential energy of a Ti4+ ion at position (x,y,z) in the
absence of an external field be

where a ) restoring force constant and b1 and b2 )
nonlinear restoring force constants. They are both
positive. Let there be a local electric field, Elocal, acting
on the ion. The additional potential energy is -qEB‚rb,
where rb is the radius vector. Treating this system by
statistical mechanics, the partition function, Z, simpli-
fied by Stirling’s approximation, becomes

The free energy of Ti4+ ions, AE, as a function of
temperature, T, and local electric field, Elocal, is given
by the equation

However, a free energy, AP, is more convinent for most
purposes, which is analogous to the Gibbs free energy,
expressed in terms of the polarization, P, and temper-
ature, T

with

Now, eq 76 becomes

Here, eq 78 is a general expression. The difference
between the external field and the local field has not
been taken into account yet. Substituting eq 74 into
eq 75 and the corresponding results into eq 78, we
have

Since from eq 69 and eq 79

with PTi′ ) the polarization arising from ionic displace-
ment of the Ti4+ ion, Pi ) ε0XiElocal

i where i ) species i,

and the external field, Ex, being applied in the x
direction, we get

By solving all equations in the set of eq 81 except the
first for Px,Ti, Px,Ba, Px,Oa, Px,Ob1, and Px,Ob2 in terms of
Px,Ti′ and Ex, then when these values are substituted into
the first equation of the set (eq 81), an equation which
relates Ex and PTi′ can be obtained

with

and c3 and c4 can be obtained from eq 72. In the
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process of setting up eq 81, various polarizations,
Px,Ba, Px,Oa, Px,Ob1, and Px,Ob2 may be combined into a
total polarization Px, which can be further reduced into
an equation in terms of Px,Ti′ only in connection with
eq 82

In the case of spontaneous polarization when Ex ) 0
but Px and Px,Ti′ are not, we may combine with eq 82
and find

We use eq 84 in connection with eq 82 to express the
field in terms of P, rather than PTi′, and find

If we disregard the cubic term, to get the dielectric
behavior above TC, in a small field and solve for Px,
treating the b’s as small quantities, we have

and according to the form of eq 61

Furthermore, eq 86 allows us to integrate because

Taking into account the first and second terms of eq 79

Comparing eq 90 with eq 21, we find

6. Surface-Modified Devonshire Theory

The concept of the core-shell prevails in many
theoretical models regarding different geometrical shapes,
such as sphere,36,62-66 cube,36 cylinder,66 and film.66 All
these models are phenomenological and have an origin
of thermodynamics. The free energy density of the
ferroelectric, F(P), is first expanded in terms of polariza-
tion, P, and then the free energy, φ(P), is determined
by the integration of F(P). The free energy, φ(P), is
actually the sum of the free energy of the core, φC(P),
and the free energy of the shell, φS(P)

Similar to the Devonshire theory,2 a more general67

Landau-Ginzberg-Devonshire theory68 is applied to
the free energy of the core, φC(P)

where A, B, C, and D ) constants and T0,∞ ) bulk
Curie-Weiss temperature. The gradient term (∇P)2

accounts for the inhomogeneous distribution of polariza-
tion.62 The free energy of the surface layer, φS(P), on
the other hand, is formulated differently, in accordance
with various conditions. They are summarized in Table
2.

The extrapolation length, δ, in eq 97 depends on the
intersite interaction as well as the coordinate number
within the surface layer.62 For a film, this length is
independent of film thickness, because the surface
coordination number does not change with the film
thickness. However, for cylindrical and spherical struc-
tures, the coordination number decreases as size de-
creases, and so the extrapolation length changes with

Table 2. Surface Modified Devonshire Theory Using a
Core-Shell Model

model condition fS(P) or FS(P) eq

Zhong et al.63 surface energy ∫s
1/2Dδ-1P2 dS 97

Shih et al.36 depolarization energy 1.7P2(D/L)(t/L) 98
multidomain wall energy γ[(L/D) - 1](1/L) 99

G0(T) ) -NkT ln[( e
Nh3)(πkT)3(2m

a )3/2] +

3N(kT)2

4a2
(3b1 + 2b2) (91)

â ) ( c4

ε0c5
)2(Nq2

4a3 )k(3b1 + 2b2)] (92)

-B ) ( c4

ε0c5
)4( Nq4

16a4)b1 (93)

D ) ( c4

ε0c5
)4( Nq4

16a4)2b2 (94)

φ(P) ) φC(P) + φS(P) (95)

φC(P) ) ∫v{A
2

(T - T0,∞)P2 + B
4

P4 + C
6

P6 + D
2

(∇P)2}dV

(96)

Px )
c1

c5
ε0{2aPx,Ti′

Nq2 [1 + kT
a2

(3b1 + 2b2)] +

4Px,Ti

N3q4
[b1Px,Ti′

2 + b2(Py,Ti′
2 + Pz,Ti′

2 )]} +
c2

c5
Px,Ti′ (84)

Px )
c5

c3
Px,Ti′ (85)

Ex )
c3

c5
{ 2a

Nq2

c3

c5
Px[1 + kT

a2
(3b1 + 2b2)] +

4
N3q4(c3

c5
)2

[b1Px
2 + b2(Py

2 + Pz
2)]} +

c3c4

c5
2

Px

ε0
(86)

Px )

Nq2

2a (c5

c3
)2

[1 + kT
a2

(3b1 + 2b2)](Ex + (-
c3c4

c5
2 )Px

ε0) (87)

R )

q2

2a(c5

c3
)2

[1 + kT
a2

(3b1 + 2b2)]
(88)

Ex ) (∂G
∂Px

)
T

(89)

G ) -NkT ln[( e
Nh3)(πkT)3(2m

a )3/2] +

3N(kT)2

4a2
(3b1 + 2b2) +

( c4

ε0c5
)2(Nq2

4a3 )k(T - T0)(3b1 + 2b2)]P
2 +

( c4

ε0c5
)4( Nq4

16a4)[b1(Px
4 + Py

4 + Pz
4) +

2b2(Py
2 Pz

2 + Pz
2 Px

2 + Px
2 Py

2)] (90)
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size. If the extrapolation length at infinite size is δf,
where the subscript f means film, for a sphere66

where the subscript S denotes sphere and d ) diameter.
For a cylinder66

where the subscript C denotes cylinder. The D, t, and L
in eqs 98 and 99 stand for the domain width, the
thickness of the Schottky space-charge layer, and the
size of the particle, respectively. To reduce the depolar-
ization energy, particles break up into domains of
different polarizations. The domain wall energy, γ, is a
function of the polarization as well. If there is an
external electric field,66 the term -EextP can be added
to eq 96. A slight modification of including x, y, and z
components of (∇P)2 in eq 96 is also needed if anisotropy
is taken into consideration.65

In general, by solving the spatial distribution of
polarization and substituting the polarization into the
free energy expression, the size dependence of TC may
be obtained from the coefficient of the P2 term in the
free energy expression. According to Zhong et al.63

where TC,∞ ) the Curie temperature of the bulk crystal,
D ) constant, A ) constant, d ) diameter, and δ ) the
extrapolation length from eq 100 with δf ) 43 nm.
According to Shih et al.36

with

and

where TC,∞ ) the Curie temperature of the bulk crystal,
R, â, c ) constants, ê ) half-width of the wall, D )
domain width, t ) thickness of Schottky space-charge
layer, and L ) size of the particle. Theoretically, if the
core-shell model is used, we see that TC becomes lower
as the particle size becomes smaller from eqs 102 and
103.

7. Random Field Theory

Both Devonshire’s phenomenological theory2 and
Slater’s local field theory3 are considered as mean field
theories. This is because the local electric field, Elocal,

in Devonshire’s theory is constant at each point in space,
and the local electric field of type a (or type I) oxygen,
Elocal

Oa, of type b (or type II) oxygen, Elocal
Ob, of titanium,

Elocal
Ti, and of barium, Elocal

Ba, are constants in each unit
cell in Slater’s theory. However, in a system with defects
(impurities and vacancies) randomly distributed over
the crystal lattice sites where each defect possesses the
electrical moment, a more general approach is required
to account for the differences in local electric field from
site to site. This approach is called the random field
theory.69

For simplicity, we will consider dipole orientations in
one-dimensional space, and each dipole can be oriented
in either a + or a - direction. Let di ) dipole moment
of an atom located at the ith site, d ) the magnitude of
a dipole, Ei ) the random local field which acts on the
ith site from the other defects, 〈di〉 ) the average of
different dipoles on the ith site at the microscopic level,
and D ) 〈di〉 ) the observed dipole moment at the
macroscopic level. The bar represents spatial averaging
and angular brackets thermal averaging.

The Hamiltonian of the system, H, is

and the local electric field is

where Jij ) the dipole-dipole interaction. From the
Boltzmann principle in statistical thermodynamics, the
thermal average of the dipole moment, d, in a field, E,
is

where Tr ) trace of a matrix, k ) Boltzmann’s constant,
and T ) absolute temperature. From the definition of
the delta function, ∫ dt φ(t)δ(t - t0) ) φ(t0)

where δ(E-Ei) ) f(E,D), a distribution function of the
random field. Equation 109 is a self-consistent equation
for macroscopic average dipole moment in terms of D.

Notably, f(E,D) reduces to a delta function in the
mean field approximation when we neglect field fluctua-
tion

where

Substituting eq 110 into eq 109, we have

1
δS

) 5
d

+ 1
δf

(100)

1
δC

) 5
2d

+ 1
δf

(101)

TC ) TC,∞ - 6D
δAd

(102)

TC ) TC,∞ - 1
R′[1.7Dt

L2
+ 8c

3ê] (103)

R′ ) R + 3.4Dt
L2

+ [- 2ê
D

R + 8c
3ê] (104)

ê ) [43c(-R - 2
3

âP2 - 23
45

σP4)-1]1/2
(105)

Η ) -∑
i

diEi (106)

Ei ) ∑
j

Jijdj (107)

〈d〉E )
Tr{di exp(diE

kT )}
Tr{ exp(diE

kT )}
. (108)

D ) 〈d〉Ei
) ∫ dE δ(E - Ei) 〈d〉E ) ∫ dE f(E,D) 〈d〉E

(109)

f(E,D) ) δ(E - Ei) ) δ(E - 〈Ei〉) (110)

〈Ei〉 ) JD (111)

D ) ∫ dE δ(E - JD) - 〈d〉E (112)
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This leads to

Equation 113 is the Weiss mean-field theory70 for the
order-disorder phase transition. It always has a phase
transition at low enough temperature. For a system of
only two possible dipole directions, eq 113 reduces to
the hyperbolic function

However, when the fluctuations of the local field
become significant, f(E,D) cannot be reduced to the delta
function any more. This means that the random field
theory for phase transitions is more general than the
mean field theory.

In a system with lattice defects, the suppression of ε

can be explained by eq 109. Lattice defects generally
make the distribution function f(E,D) broad. If f(E,D)
is too broad, there is no solution of eq 109 for D. The
shift of TC can also be understood by eq 109. Indeed, if
f(E,D) is near TC, D f 0, and it is valid that

Substituting eq 115 into eq 109, and realizing that
f(E,D)0) is an even function and symmetrical for a cubic
system, we obtain

and eq 109 reduces to

One can see that eq 117 is in fact an equation for TC. If
the distribution function, f(E), becomes broader and
broader, TC will become smaller and smaller.

8. Summary

Ferroelectric properties of BaTiO3 include polariza-
tion, P, dielectric constant, ε, lattice dimensions, a and
c, and lattice strains, x and z. The structure-ferroelec-
tricity relationships at different structural levels are
summarized in Table 1.

At equilibrium, they can be related to macroscopic
properties of temperature, T, electric field, E, and stress,
X, by Devonshire’s phenomenological theory. T, E, and
X are also control parameters for P, ε, a, c, x, and z.
This approach purely depends on the tertiary structure
of BaTiO3 (ferroelectric domains) by assuming both
primary (ionic spacing) and secondary (crystal lattice)
structures are perfect. Therefore, the local electric field
is constant everywhere.

To link the ferroelectric properties with the primary
and the secondary structures, Slater’s local field theory
provides the connection by computing the exact local

Lorentz field, not assuming spherical symmetry but
taking account of the precise crystal structure. The
corresponding local electric fields of barium, titanium,
and oxygen atoms are the same in each unit cell.

Despite the important role of the primary and second-
ary structures in ferroelectricity, the Devonshire theory
is commonly used in explaining the size effect of BaTiO3
particles from a quaternary structural point of view. The
BaTiO3 particle is thought to have a ferroelectric core
and a paraelectric shell (core-shell model). An extra
surface-layer term in the form of either surface energy63

or depolarization energy36 is added to the Devonshire
theory to account for the disappearance of ferroelectric-
ity as the particle size is reduced.

The core-shell model does not apply to BaTiO3
particles with defects distributed randomly over the
crystal lattice sites. Under this condition, the local
electric field fluctuates from site to site. Therefore, the
random field theory69 is more suitable to describe the
disappearance of ferroelectricity; that is, as the distribu-
tion function f(E,D) of the random electric field becomes
broader and broader, the dielectric constant, ε, will be
suppressed more and more, and the Curie temperature,
TC, will become smaller and smaller.

Acknowledgment. We gratefully acknowledge sup-
port of the Army Research Office (DAL03-92-G-0241 and
DAAH04-93-G-0098) and the MRSEC Program Science
Foundation (DMR-940032). We thank B. E. Vugmeister
for discussing the random field theory with us.

Appendix

A ) constant
A ) coefficient
A ) Helmholtz free energy
A0 ) free energy of the unpolarized cubic crystal
AE ) Helmholtz free energy
AP ) Gibbs free energy
a ) lattice constant
a ) restoring force constant
a ) a axis
B ) constant
B ) coefficient
-B ) coefficient (eq 93)
Ba ) barium atom
b ) lattice constant
b1 ) nonlinear restoring force constant
b2 ) nonlinear restoring force constant
C ) constant
C ) coefficient
C11 ) average longitudinal elastic constant
C33 ) elastic constant
c ) lattice constant
c1 ) constant
c2 ) constant
c3 ) constant
c4 ) constant
c5 ) constant (eq 83)
D ) constant
D ) coefficient
D ) coefficient (eq 94)
D ) equilibrium size of the 180° domain
D ) domain width
D ) observed dipole moment at the macroscopic level
d ) equilibrium size of the 90° domain
d ) diameter
d ) magnitude of a dipole
di ) dipole moment of an atom located at the ith site

D )
Tr{di exp(diJD

kT )}
Tr{exp(diJD

kT )}
(113)

D ) d tanh(JD
kT) (114)

f(E,D) ) f(E,D ) 0) + ∂f
∂E

‚D (115)

∫ dE f(E,D ) 0) 〈d〉E ) 0 (116)

∫ dE
∂f(E)
∂E

〈d〉E|TC ) D
D

) 1 (117)
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〈di〉 ) average of different dipoles on the ith site at the
microscopic level

E ) electric field
E0 ) field produced by fixed charges external to the body
E1 ) depolarization field from a surface charge density n‚

P on the outer surface of the specimen (electrodes)
E2 ) Lorentz cavity field: field from polarization charges

on inside of a spherical cavity cut (as a mathematical
fiction) out of the specimen with the reference atom as
center

E3 ) field of atoms inside the spherical cavity
E0

90 ) minimum electric field to drive 90° domain spike
E0

180 ) minimum electric field to drive 180° domain spike
EC ) coercive electric field
ECRIT ) critical electric field
Ei ) the random local field which acts on the ith site from

the other defects
Elocal ) local field acts at the site of the atom
EB ) electric field vector
e ) electric charge
F ) free energy density
f ) distribution function of the random field
G ) coefficient
G ) elastic Gibbs function
G0 ) free energy for zero polarization
G0 ) coefficient (eq 91)
g ) crystal size
H ) Hamiltonian function
h ) Planck’s constant
J ) dipole-dipole interaction
k ) Boltzmann constant
L ) size of the crystal
L ) lamina length
L ) size of the particle
M ) domain wall mobility
m ) mass
N ) wall thickness
N ) number of atoms per unit volume
O ) oxygen atom
Oa ) type a oxygen atoms that lie along the same line of

the polarization axis
Ob1 ) first type b oxygen atoms that are at the right angle

to the polarization axis
Ob2 ) second type b oxygen atoms that are at the right

angle to the polarization axis
P ) polarization
Px ) polarization component
Py ) polarization component
Pz ) polarization component
PB ) polarization vector
Pr ) remnant polarization
PS ) spontaneous polarization
PSC ) spontaneous polarization at Curie temperature
∆P ) discontinuous jump of the spontaneous polarization

at Curie temperature upon heating
∇P ) polarization gradient
p ) pressure (compressive stress)
p ) constant
Q ) cubic-tetragonal phase transition latent heat
Q11 ) electrostrictive coefficient
Q12 ) electrostrictive coefficient
Q44 ) electrostrictive coefficient
q ) constant
q ) charge
rb ) radius vector
S ) entropy
SS ) spontaneous strain
∆S ) cubic-tetragonal phase transition entropy change
s11 ) elastic compliance
s12 ) elastic compliance
s44 ) elastic compliance
T ) temperature
T0 ) extrapolated temperature of the reciprocal dielectric

constant plot

T0,∞ ) bulk Curie-Weiss temperature
TC ) Curie temperature
TC,∞ ) Curie temperature of the bulk crystal
Ti ) titanium atom
Tr ) trace of a matrix
t ) thickness of Schottky space-charge layer
U ) internal energy
V ) forward velocity
V90 ) forward velocity of 90° domain spikes induced by the

minimum electric field
V180 ) forward velocity of 180° domain spikes induced by

the minimum electric field
∆V ) cubic-tetragonal phase transition volume change
w ) lamina width
X ) constant stress
X ) R/ε0υ
X′ ) R′/ε0υ
Xx ) normal stress component
Xy ) shear stress component
Xi ) stress component
x ) lattice strain
x ) x direction
xi ) strain component
Yy ) normal stress component
Yz ) shear stress component
y ) y direction
Z ) partition function
ZZ ) spontaneous strain at room temperature
Zz ) normal stress component
Zx ) shear stress component
z ) z direction
R ) constant
R ) electronic polarization
R ) polarizability
R′ ) ionic polarization
Rd ) dipolar polarizability
Re ) electronic polarizability
Ri ) ionic polarizability
Rs ) space charge polarizability
â ) constant
â ) coefficient (eq 92)
Γ90 ) 90° domain wall energy
Γ180 ) 180° domain wall energy
δ ) extrapolation length
δ ) delta function
γ ) domain wall energy
γS ) spontaneous strain
ε ) stress
ε ) ratio of the permittivity constant of a dielectric material

to the permittivity of a free space
ε′ ) permittivity constant of a dielectric material
ε0 ) permittivity of a free space
µ ) permanent dipole moment
ê ) half-width of the wall
σ ) domain wall energy
σ ) stress field
σ° ) minimum stress
σanis ) anisotropy
σdip ) dipole-dipole interaction
σW ) total wall energy
υ ) the volume of a unit cell
Φ ) potential energy
φ ) free energy
φC ) free energy of the core
φS ) free energy of the shell
ø ) the susceptibility at constant stress
s ) spatial averaging
〈 〉 ) thermal averaging
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