
TRIBUTE TO FOUNDERS: ROY JACKSON. SOFT MATTER: SYNTHESIS, PROCESSING AND PRODUCTS

Reversible Cluster Aggregation and Growth
Model for Graphene Suspensions

Michail Alifierakis , Kevin S. Sallah, and Ilhan A. Aksay
Dept. of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544

Jean H. Pr�evost
Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544

DOI 10.1002/aic.15962
Published online September 30, 2017 in Wiley Online Library (wileyonlinelibrary.com)

We present a reversible cluster aggregation model for 2-D macromolecules represented by line segments in 2-D; and,
we use it to describe the aggregation process of functionalized graphene particles in an aqueous SDS surfactant solu-
tion. The model produces clusters with similar sizes and structures as a function of SDS concentration in agreement
with experiments and predicts the existence of a critical surfactant concentration (Ccrit) beyond which thermodynami-
cally stable graphene suspensions form. Around Ccrit, particles form dense clusters rapidly and sediment. At C � Ccrit,
a contiguous ramified network of graphene gel forms which also densifies, but at a slower rate, and sediments with
time. The deaggregation–reaggregation mechanism of our model captures the restructuring of the large aggregates
towards a graphite-like structure for the low SDS concentrations. VC 2017 American Institute of Chemical Engineers
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Introduction

Graphene,1 graphene oxide,2,3 and reduced graphene

oxides4 as atomically thin macromolecular sheets are used in

an increasing number of practical applications such as liquid

fuels,5 polymer composites,6–8 energy storage and energy

conversion devices (e.g., batteries, supercapacitors, solar

cells),9–18 and inks (for printed electronics and sensors).19–21

In most of these applications, the molecular sheets have to be

first dispersed in a liquid medium to break up powder aggre-

gates and achieve the advantages of individual sheets. To do

so, two prevalent colloidal dispersion methods are used: (1)

decrease the magnitude of the van der Waals (vdW) attractive

forces to the kBT range (where kB is the Boltzmann constant

and T temperature) by lowering the Hamaker constant through

index matching (which is also used as a method for graphite

exfoliation);22 or (2) counteract the vdW forces by inducing

repulsion between the sheets through electrostatic, steric, or

electrosteric interactions.23,24 Ultimately, during the produc-

tion of a device, the dispersed suspensions are converted to an

aggregated state either through the stacking of graphene par-

ticles with themselves or with the colloidal particles of other

phases. In such aggregated structures, a deterministic control

of the topological features is of paramount importance to

define properties by controlling parameters such as accessible

area for chemical reactions, load transfer for mechanical prop-

erties, electron and heat transfer for electronic and thermal

properties. To this end, research efforts have been exclusively

experimental to observe the effects of dispersion quality on

the final properties of the products.6,24–29

However, while these experimental studies have been

invaluable in many aspects, an accurate connection between

the filler’s network structure and the properties of the final

materials has not been established. In theoretical modeling

studies of the dependence of properties to particle dispersion,

a well-defined topological state, spanning from the length

scale of the atomically thin sheets, needs to be defined as input

to a given model. If we could predict the relative position of

the graphene particles, we could then aim at predicting the

properties of the materials and yield a deeper understanding of

the underlying mechanisms. This information is difficult to

obtain by experimental methods. Even though individual gra-

phene particles and aggregates of particles can be imaged

through Scanning Electron Microscopy (SEM) or Transmis-

sion Electron Microscopy (TEM) techniques, the interpreta-

tion of those results can be difficult because of the low atomic

number contrast between graphene and carbon-based poly-

mers, the small thickness and wrinkled morphology of gra-

phene sheets8 and because of inherent difficulties in plate-like

particle imaging (such as telling the difference between

stacked and individual sheets, the natural variations in particle

lengths, the anisotropy of their shapes etc.).30

In this article, we are focusing on a modeling approach to

establish the dispersion state of the filler particles. This will
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potentially provide a way of producing input for modeling
studies of graphene-filled materials and a theoretical base to
understand the important factors that affect the dispersion state
of these particles. In addition, allowing for easy incorporation
of flow in the suggested aggregation model can provide a
tool that will allow better process control and design of pro-
cesses that include atomically thin macromolecules. Similar to
what has been done before for spherical and nonspherical
particles.31–33

To that end, we present a reversible cluster aggregation and

growth model for atomically thin macromolecules that pre-

dicts qualitatively the experimentally observed macroscopic
colloidal aggregated structures.

As a case study, we focus on the prediction of aggregated

structures experimentally observed with graphene-like materi-

als although our model is not limited to graphene but is
generic for any atomically thin molecular sheet. Based on the

experiments24 that we model, the length-scale of interest for

this type of problem is in the order of nm in thickness and lm

or tens of lm in the planar orientation of the molecular sheets.
The time scales can vary from minutes to hours or even

months.24 These are significantly larger than the typical

scales handled by molecular dynamics or even coarse-grained
molecular dynamics,34 Brownian dynamics,35 and dissipative

particle dynamics36 simulations. A Stokesian dynamics simu-

lation37 would seem more appropriate in terms of length-scale

but there are no reported efforts to model the dispersion
behavior of a large number of graphene-like particles. Two

possible reasons for this lack of literature on Stokesian dynam-

ics are the difficulties of representing the accurate shape of

graphene and of approximating the long-range interparticle
forces. These problems are innate to modeling graphene par-

ticles at these length-scales.38 Our approach is to simplify the

geometry of the particles to rigid linear segments and to use a
diffusion limited aggregation (DLA)-type of approach to sim-

plify the force field and deal with the long-time scales of this

problem. As we show in Results and Discussion section, these

assumptions hinder our ability to obtain analytically quantita-
tive results; but, they are sufficient for qualitative purposes.

The DLA model was introduced in 1981 by Witten and

Sander39 and it immediately spurred an immense interest in

the field of colloidal-particle dispersion and aggregation. DLA
is a lattice model that starts with a seed particle at the origin

and new particles are added, one at a time, which perform ran-

dom walks until they collide with the seed (i.e., the growing

cluster) and become a part of it, or until they touch a bound-
ary, in which case they are removed and a new particle is

added. This leads to the formation of a cluster with a correla-

tion exponent that can be related to experimental results for

metal-particle aggregates.39 This work gave rise to many simi-
lar models that tried to capture the physical reality of the

aggregation process of different colloidal-particle systems,

including the diffusion limited cluster aggregation (DLCA)
model,40,41 where particles as well as clusters of particles are

allowed to diffuse in space; models with finite aggregation

probability,42–46 where collisions do not always lead to aggre-

gation and can reach the reaction limited cluster aggregation
(RLCA) limit as this probability tends to zero; and, the restruc-

turing aggregation models, where clusters are allowed to reor-

ganize with time either by the deaggregation of particles from
the formed clusters (reversible aggregation)47–58 or by reorga-

nization of particles within the formed clusters.59–63 The word

“cluster” in this work (and consistent with the above literature)

indicates the product of a successful collision between (1) two
particles, (2) a cluster and a particle, or (3) two clusters. The

word “aggregation” is used to describe any event that leads to
increase in cluster size.

Aggregate restructuring is a phenomenon that has been
proven experimentally64–69 and we consider it an important

aspect of our approach, especially to model the recent experi-
mental results of Hsieh et al. on the aggregation of graphene
in aqueous surfactant solutions.24 These results showed that

there is restructuring of graphene aggregates leading to time
dependent densification towards more compact structures over
the time period of one year. The Shih-Aksay-Kikuchi (SAK)

model49 was the first reversible aggregation model to incorpo-
rate interaction potential in the calculation of the deaggrega-
tion probability of particles. The SAK is essentially a DLCA

model that allows deaggregation of particles based on a
deaggregation probability that is a function of the number of

neighbors: fewer neighbors lead to higher probability of deag-
gregation. In this model, the particles are spherical and thus
contact each other only at a point.

This approach is very attractive for our case because we

aim to create a general Reversible Cluster Aggregation (RCA)
growth model that can be used for systems with different inter-
action potentials (the difference in interaction potential caused

by different surfactant concentrations as is expressed mathe-
matically in the next section). But, as we aim to model atomi-
cally thin macromolecules that contact with each other at

different points with variable contact angles and areas, in our
case, the interaction potential will also depend on the contact
area (comprised of contact angle and contact point) between

the sheets. To allow rotation, we follow a nonlattice approach
as opposed to the lattice approach of the SAK model and we

also add an aggregation probability calculation, in addition to
the deaggregation probability that is found in the SAK model,
to make it more amenable to generalization. To the best of our

knowledge, there is no work that deals with reversible aggre-
gation of atomically thin macromolecules or sheets even
though there are DLA-type models that deal with nonspherical

particle shapes.60,70–72

The RCA model developed in this study is detailed in the
following section. We test its validity by utilizing Hsieh
et al.’s recent experimental results24 on the aggregation of

reduced graphene oxide sheets which we will refer to as func-
tionalized graphene sheet (FGS) from here on. In the afore-
mentioned work, FGSs were first dispersed in an aqueous

sodium dodecyl sulfate (SDS) solution by ultrasonication at
different adsorption levels of SDS.24 Above a threshold SDS

concentration of 10 lM (Ccrit, where C is the SDS concentra-
tion) at 0.1 mg/mL FGS, suspensions stayed dispersed; while
below that threshold concentration, aggregation and sedimen-

tation were observed. Variations in the dispersion state were
attributed to the adsorption of anionic dodecyl sulfate (DS2)
molecules onto FGSs that imparted varying levels of electro-

static repulsion between the sheets at different SDS concentra-
tions. When dealing with the fully dispersible FGS, five basic
types of structures were observed under optical microscopic

characterization with varying SDS concentration as summa-
rized in Figure 1 (adapted from Ref. 24): (1) a highly ramified
network of aggregates (Figure 1a) that spans through the entire

system (i.e., a gel-like state) when no SDS was added; (2)
less-ramified aggregates (Figure 1b) at around C 5 5 lM; (3)
large compact aggregates (Figure 1c) of �10 lm in size along

with some micrometer size particles at around C 5 10 lM; (4)
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dispersed single- or few-layer sheets (Figure 1d) at C> 10

lM, threshold concentration; and (5) hard aggregates of a few

lm in size (Figure 1d) corresponding to partially oxidized

graphite particles that do not fully disperse to single graphene

oxide sheets. These observations display the effect of variable

interaction potential between the FGSs as SDS adsorption on

FGS changes.
However, the optical microscopic images of Figure 1 only

display the state of the suspensions right after the dispersion of

the suspensions by ultrasonication. When these suspensions

are allowed to age up to one year, ultraviolet-visible (UV-Vis)

light absorption of the supernatant indicates a significant

amount of sedimentation below the threshold SDS concentra-

tion of 10 lM as shown in Figure 2 (adapted from Ref. 24).

While the blue curve corresponds to images presented in Fig-

ure 1, the supernatants of the suspensions below 10 lM thresh-

old concentration become highly transparent as aggregates

settle out with aging time. This indicates that the aggregates of

Figures 1a–c densify further with time. While these experi-

ments do not provide a clear mechanism for the densification

process, the RCA growth model we present in the following

section suggests that at C<Ccrit the restructuring of the gra-

phene aggregates is the cause of densification with time but

there are kinetic reasons that limit the restructuring rate of the

aggregates. The model also predicts a threshold surfactant

concentration (Ccrit) above which thermodynamically stable

dispersed single or few-particle aggregates are observed as

outlined with light gray shaded region in Figure 2.

Model and Application

Our RCA model is in principle a reversible aggregation

model that explores the spectrum between DLCA and RLCA.

The particles are represented in 2-D by line segments of unit

length that are moving freely (off-lattice simulation) in a

square matrix with periodic boundary conditions by perform-

ing translational and rotational steps. Imminent collisions

between particles/clusters happen with a certain probability

(which we will call aggregation probability) and produce clus-

ters. Particles can detach themselves from the clusters that

they are part of with a certain probability that we will call

deaggregation probability.
We initially place the particles at random positions and ran-

dom orientations in a square matrix, making sure that they do

not overlap with each other, do not form clusters and do not

touch the boundaries. At each time step, we pick one of the

existing particles/clusters. Depending on the step, this particle/

cluster is destined to perform either a rotation or a translation

(this option interchanges step by step). We decide the direction
of the possible movement; and, based on an aggregation prob-
ability calculation, two particles/clusters that are sufficiently
close to each other and are meant to collide will either collide
and aggregate or will not move at all. At the end of each step,
we pick a particle at random and if it belongs to a cluster then
we decide whether it will deaggregate from all its neighbors or
not based on a deaggregation probability calculation. A more
detailed algorithm is provided in Supporting Information
Appendix A and Figure S1.

The above description is based on the assumption that line
segments in a 2-D matrix represent plate-like particles in 3-D.

Figure 1. Representative optical microscope images of FGSs dispersed at a concentration of 0.1 mg/mL in aque-
ous SDS solutions after sonication.

SDS concentration in each suspension was: (a) 0 lM (DI water), (b) 5 lM, (c) 10 lM, (d) 20 lM. The scale bar is the same for all

images. Adapted from Ref. 24.

Figure 2. UV-Vis absorbance of suspensions with FGSs
dispersed at a concentration of 0.1mg/mL, in
SDS solutions with various SDS concentra-
tions, a few minutes after sonication (blue
line) as well as after the first centrifugation
(1 h later, green line), and after centrifugation
4 days (red line) and 1 year (purple line) later;
All samples were diluted 1:9 prior to absor-
bance measurements.

The dark gray region marks the surfactant concentra-

tion values for which an aggregated state is formed. The

light gray region shows the surfactant concentrations for

which the particles remain dispersed. The x-axis is loga-

rithmic but the value of 0 was added on the left to help

in a comparison with Figure 1. Adapted from Ref. 24.

[Color figure can be viewed at wileyonlinelibrary.com]
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If we imagine that there is a third-dimension perpendicular to

the simulation space and our line segments extend in that
space, then we can see our particles as 2-D plates that are all

parallel to the axis that defines the third dimension and are

restricted within the same boundaries with respect to that

dimension (i.e., concentric). This is the basic assumption we
make to reduce our model to 2-D. We assume no movement in

the third dimension; but, we cannot ignore it entirely as our

particles need to have a non-zero volume to use the electro-

static equations that we present below. Assuming they are con-
centric is a reasonable assumption that ensures that all

particles will interact with each other when they collide in 2-D

and simplifies the calculation of the total interaction energy

for colliding particles that we are presenting below.
The actual thickness of the graphene-like particles we

model is less than 1 nm,4 and the aspect ratio of graphene

sheets is very high, typically on the order of 103.73 As there is

such a large difference in length scales, we ignore the effect of

thickness in physical interactions between the particles. Even
though the thickness is ignored in physical interactions

between different particles, it cannot be ignored for the vdW

force calculations as this would mean that the particles are

massless and thus exert no force. In the energetic calculations
that are presented below, the particles are treated as 1 3 1

lm2 plates with a thickness of 1 nm.
The above RCA growth model was used to simulate the

experimental results reported in Ref. 24 as summarized in the

introduction. The only adjustment we had to do to the model
described above to tackle this problem was to calculate the

aggregation and deaggregation probability parameters for this

particular case. Below, we present the Arrhenius-type relations

that were used followed by an explanation of how the aggrega-
tion and deaggregation barriers are calculated through the cal-

culation of the energy potential and how we calculate the

distance between linear segments by relating it to the coordi-

nates of the particles. The aggregation and deaggregation
probabilities are given by Eqs. 1 and 2, respectively

Pagg5f1 exp 2
Eagg

kBT
� 1

f0

� �
(1)

Pdeagg5f2 exp 2
Edeagg

kBT
� 1

f0

� �
(2)

where f0, f1, and f2 are constants, and Eagg and Edeagg are the

energy barriers for aggregation and deaggregation, respec-

tively. f1 and f2 express the aggregation and deaggregation fre-

quency and f0 is a scaling factor for the aggregation and
deaggregation energy barriers which is used to reduce the total

time scale of the aggregation and deaggregation events to

make the simulations computationally feasible. More details

on the physical and numerical parameters used in our model
and the values used for our simulations can be found in Sup-

porting Information Appendix B.
The two energetic barriers are calculated from data of the

interaction energy as a function of distance among the collid-

ing particles and then they are simplified to the equivalent step
potential barriers as shown in Figure 3. The aggregation

energy barrier is equal to the maximum of the interaction

energy of a pair of sheets as a function of distance, while the

deaggregation barrier is equal to the difference between that
maximum and the value of the interaction energy at the dis-

tance of 1.5 nm,24 to account for a steric layer from an

adsorbed SDS monolayer (i.e., the distance that is about equal

to twice the width of a hydrocarbon chain). Assuming that the

only effective forces are the vdW attractive forces and the
electrostatic repulsive forces, we use the equations calculated
for parallel plates of infinite length74,75 similar to the proce-

dure followed in24

uelec564kBTnbj
21tanh2 1

4
ws

� �
exp 2jhð Þ (3)

uvdW52
A

12p
1

h2
1

1

h12dð Þ2
2

2

h1dð Þ2

" #
(4)

Utotal5

ð
uvdW h lð Þð Þdl1

ð
uelec h lð Þð Þdl (5)

where uelec, uvdW are the electrostatic and the vdW potentials
per area of the colliding particle, Utotal is the total potential of

the colliding particles, nb is the ion number density, j21 is the
Debye length, ws is the FGS potential which was calculated
from the Poisson-Boltzmann equation using measurements of

the charge induced on FGS through the adsorption of SDS sur-
factants,24 h is the distance between the sheets, A is the
Hamaker constant,76 and d is the thickness of the sheets.

However, in our case, we deviate from the model of parallel

plates of infinite length by considering non-parallel sheets as
discussed below. Here, h in Eqs. 3 and 4 is now given as h1 or

h2, depending on whether we calculate distance from the edge
or from the main body of the collided particle (as shown in
Figure 4), and they are both expressed in terms of the

x-coordinate of the particles. This way, we can do the integration
along the length of the colliding particle as expressed in Eq. 5

Figure 3. Total energy of interaction of two parallel
sheets during collision (blue solid line) and
calculation of the respective aggregation
(Eagg) and deaggregation (Edeagg) energies.
The dashed red line shows the extracted
deaggregation step-potential used by the
model while the dashed and dotted black
line shows the extracted aggregation step-
potential.

Both potentials have the same maximum equal to the

maximum of the total energy of interaction. The gray

dotted vertical line indicates the assumed steric layer at

1.5 nm. This calculation is repeated for every imminent

collision as the relative positions (angle and point of

contact) of the particles is different in each case. [Color

figure can be viewed at wileyonlinelibrary.com]
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h15
j a22a1ð Þx01 b22b1ð Þjffiffiffiffiffiffiffiffiffiffiffiffiffi

11a1
2

p (6)

h25min
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1x01b12y3ð Þ21 x02x3ð Þ2
q

;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1x01b12y4ð Þ21 x02x4ð Þ2

q � (7)

for the cases of body-body and edge-body distance calcula-

tions, respectively. min(a,b) is a function that outputs a if

a� b or b if b< a. Each line segment is expressed by an equa-

tion of the form:

y5aix1bi (8)

with i 5 1 for the moving particle (with coordinates of the two

edges (x1,y1) and (x2,y2) and i 5 2 (with coordinates [x3,y3]

and [x4,y4]) for the collided particle. x0 is the x coordinate of

the moving particle (i 5 1) and varies between x1 and x2.
As Eqs. 3 and 4 express the per area interaction energy of a

plate that is parallel to an infinite plate, we decreased the val-

ues of these equations by a factor of 102 (which is factored in

f0 - for details see Supporting Information Appendix B) to

approximate the per area interaction energy of an infinitesimal

plate interacting with a finite plate and then we integrate the

infinitesimal plate interaction along the length of the colliding

particle (x0) to take the angle difference into account. This

procedure is equivalent to considering each particle as a sum

of infinitesimal parts that are all parallel to their interacting

particle.

When a collision of two sheets (either single sheets or
sheets that are part of a cluster) is imminent, the above ener-

getic calculation is performed in order to calculate the interac-

tion energy for different distances between the sheets. From
these data, we calculate the aggregation and deaggregation

energies between the two particles as shown in Figure 3. These

values are substituted into Eqs. 1 and 2 to calculate the proba-
bility for aggregation and deaggregation, respectively. The

aggregation probability value defines whether these particles/
clusters will collide, in which case they aggregate and merge

in one cluster, or they will not collide at all. The deaggregation

probability value, in case of a successful collision, defines the
probability that the aggregated particles may deaggregate in

future steps.
For computational simplicity, we assume that deaggregation

of a particle signals deaggregation from all its neighbors
simultaneously, following the SAK model.49 The overall deag-

gregation barrier (Edeagg) is assumed to be equal to the sum of
the deaggregation barriers that were calculated during the col-

lision of each pair of particles that is part of the deaggregation

process. In order for deaggregation to occur in this way, it was
necessary to assume that the deaggregation barrier calculation

is independent to the direction of the deaggregating step. This
is not very far from the truth as the maximum of the energy

barrier is always very close to the point of collision, which

means that the relative positions between the deaggregating
sheets are close to the relative positions of the aggregating

sheets. Thus, the parameters that matter the most in the calcu-

lation of the aggregation and the deaggregation barriers are
the point of collision and the angle created by the two particles

at that point and not the angle of the relative movement
between them.

The transformation of the continuous potential to a step

potential barrier for aggregation and a step potential barrier

for deaggregation, as seen in Figure 3, reduces the computa-
tional load and even though we expect it to affect the disper-

sion of the particles around clusters we do not expect it to

affect their size and structure. The main effect of this assump-
tion is that during the collision of clusters the only energetic

calculation that is performed is between the collided particles.
In summary, the assumptions of this model and the assump-

tions introduced to tackle this particular problem are:
1. The system is simplified to 2-D and the graphene par-

ticles, that are normally nonflat sheets, are represented by

straight and rigid line segments. These represent plate-like
particles that are concentric and parallel with respect to the

dimension perpendicular to the plane and their thickness is

ignored during physical interactions.
2. The only acting forces are vdW and electrostatic.
3. The equations of interaction forces for plates of infinite

length are assumed to be valid for particles of finite length

and for edge-body interactions after a reduction by a factor.
4. Forces are only effective during collision and deaggre-

gation attempts. During a collision, the only energetic calcu-
lation is between the two colliding particles, which have to

overcome the aggregation barrier to form a new cluster.
5. There is a steric barrier of 1.5 nm between the particles

due to adsorbed SDS.
6. During deaggregation, we assume that the energy for

deaggregation is the sum of the calculated deaggregation

energies between the particle that tries to deaggregate and
all its direct neighbors (the particles it was in direct contact

with at that point). For each case, the deaggregation energy

Figure 4. Two line segments are represented with
black. The distance as a function of the
x-coordinate is represented by the length of
the blue arrows for h1 and by the length of
the red arrows for h2 (in this case, it is the
distance from the point (x4,y4)).

The purple arrow is taken at the point where

h1(xp) 5 h2(xp). The h1 equation is used when xp<x < x1

while the h2 equation is used when x2<x < xp. In the

x-coordinate scale at the bottom the x0 domain is shown

between the brackets (in this case it is [x2,x1]). [Color

figure can be viewed at wileyonlinelibrary.com]
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is assumed to be independent of the angle of the relative

movement between the deaggregating particles.
7. The diffusion coefficient does not depend on the direc-

tion that the particles move and there are no effects from the

liquid medium.
8. Sedimentation only happens during centrifugation and

thus gravitational forces are ignored in our simulation,

although gravitational effects are considered later in the

Results and Discussion section once the resulting structures

are determined.

Results and Discussion

We first present the results of our simulations from the

implementation of the above RCA model by comparing the

cluster structures to the optical microscopy images of Figure 1

and presenting how the cluster size changes with surfactant

concentration and time. Then, we show the change in gravi-

metric Peclet number, Peg, of the clusters with surfactant con-

centration and time and explain why at Ccrit a high percentage

of the particles is expected to sediment early as shown in Fig-

ure 2 and for lower surfactant concentration we show a densifi-

cation of the clusters with time that can lead to sedimentation

of the formed gel later in time. Finally, we discuss the behav-

ior of our model in terms of aggregation and deaggregation

rates and explain that even though we have not reached equi-

librium we do not expect the clusters formed at high C to grow

further due to their dynamic nature.

Cluster size and critical concentration

In Figure 1, we presented the different structures that are

observed under optical microscope for different surfactant

concentrations right after sonication of the samples. These

structures varied from highly ramified aggregates at low sur-

factant concentrations, to dense aggregates around Ccrit, and to

well-dispersed suspensions for even higher surfactant concen-

trations. Figure 5 shows equivalent structures of clusters pro-

duced by our model. The different surfactant concentrations

correspond to different inter-particle forces and all results are

captured at the 6 3 106 simulation step which corresponds to

about half minute of experimental time (see Supporting Infor-

mation Appendix C for calculation of diffusion time scale). In

this case, two main types of structures are identified: ramified

clusters (Figures 5a, 5b) of average size that decreases with

surfactant concentration and dispersed single or few-layer par-

ticles (Figure 5d).

To determine the growth rate of the clusters for different
surfactant concentrations, we determine the average number
of particles per cluster (�s) as a function of time as shown in
Figure 6. At short times, the lower the surfactant concentra-
tion, the higher the net aggregation rate (i.e., the rate of change
in average cluster size) is. For surfactant concentrations of
1025 and 0.1 lM, the average cluster size follows a similar
pattern, with the low concentration having clearly higher net
aggregation rate initially. At longer times, however, both sys-
tems reach the same limit as growth eventually stops near the
limit of total number of particles in the system (with the

Figure 5. Images from simulations for different surfactant concentrations with constant concentration of particles
(�0.49 particles/lm2, 1,000 particles in a 45 x 45 lm matrix at the step 6 3 106).

Particles that are parts of the neighboring simulation domains (the boundary conditions are periodic) appear in green. Particles

that belong to clusters that have crossed the boundaries and reappear on the other side appear also in green and their unconnected

parts have been moved back to show the complete shape of each cluster and appear in black. All other particles that are part of

the main simulation domain appear in black. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. Results from simulations for different surfac-
tant concentrations with constant concentra-
tion of particles (�0.49 particles/lm2, 1000
particles in a 45 x 45 lm matrix).

The vertical axis depicts the average number of particles

per cluster while the horizontal axis represents the simu-

lation time. The dotted black horizontal line indicates

the maximum cluster size, equal to the total number of

particles (1000). These data represent the 5-point moving

average of the average values from 3 simulations with

the standard deviation of the 3 values drawn as a faded

region around each corresponding line. The dark gray

region indicates the aggregated state and the light gray

region marks the dispersed state. [Color figure can be

viewed at wileyonlinelibrary.com]
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system C 5 1025 lM reaching that limit earlier due to higher
aggregation rate). Growth rate generally slows with time in
each case, independent of concentration. This reduction in
growth rate was expected due to a decrease in the number of
single particles in the system. The clusters that are formed
have higher intercluster distances and diffuse slower relative
to the single particles that existed initially.

Above a surfactant concentration of 0.1 lM, there is a sud-
den drop in the cluster growth rates with surfactant concentra-
tion. At the 10 and 100 lM concentrations, cluster growth is
nearly zero for high simulation times, corresponding to the
dispersed states observed in Figure 5c. Once a thermodynami-
cally stable dispersed state is achieved, we expect the clusters
to stop growing and remain embryonic.77 The results in Figure
6 suggest that we have not yet reached this equilibrium state in
our simulations and discuss this claim further in the last sub-
section of Results and Discussion by looking at the average
cluster lifetime.

The transition from fast growth (at short times) to slow or
no cluster growth regime helps us to identify a region of sud-
den change in the net aggregation rate pattern between the
SDS concentrations of 0.1 and 10 lM. A transition from fast
cluster growth regime to almost zero growth takes place in
this region. At this intermediate concentration (C 5 1 lM),
there also appears to be a significant number of small clusters
of size 10 lm and smaller just like in case (iii) (Figure 1c).
Thus, we have two indications (a transition zone in growth
rate and 10 lm-sized clusters) that C 5 1 lM is the critical
concentration as predicted from our model. One more charac-
teristic of the critical concentration is that it tends to produce
denser aggregates (as seen in Figure 1) that lead to more par-
ticles sedimenting and thus lower UV-Vis absorbance (as seen
in Figure 2). We quantify this claim in the following subsec-
tion by calculating the Peg of clusters and noting its shift with
SDS concentration.

Cluster sedimentation

Traditionally, Peg has been used as the sedimentation metric
in colloidal science.74 Peg expresses the balance between
Brownian motion and buoyancy versus gravity. A Peg value of
1 or lower is indicative of non-sedimenting individual particles
while a value a lot higher than 1 indicates strong gravitational
forces and therefore fast sedimentation. We define the Peg of
an individual particle as defined in74

Peg5
4pDqa3glc

3kBT
(9)

where Dq is the difference in density between the particle and
the solution, a is the hydrodynamic radius of the particle, g is
the gravitational acceleration and lc is a characteristic sedi-
mentation distance, which we take to be equal to 1 mm, which
is an order of magnitude higher than the length of our simula-
tion domain.

To evaluate whether the clusters generated by our model
sediment or not we generalized Eq. 9 to calculate Peg for clus-
ters. For this, we substituted a with radius of gyration, Rg of
the cluster instead of its hydrodynamic radius since these num-
bers are close to each other and the former is easier to calcu-
late. The density of the clusters was calculated as the ratio of
total mass of graphene particles and water occupying the vol-
ume not-occupied by the particles over the total volume. The
volume of the clusters is assumed to be equal to the volume of
a disk with a radius of Rg and thickness equal to the length of

one graphene particle (l). This is consistent with our existing
assumption of treating our individual particles as 1 3 1 lm2

plates with a fixed 1 lm depth in the direction perpendicular
to the 2D plane

R2
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1

N
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where N is the total number of particles of the cluster, Ri is the
distance between the center of each particle and the center of
mass of the cluster, mfgs, the mass of one FGS, l is the length of
the graphene sheets in the dimension perpendicular to the 2D
plane (i.e., 1 lm), Vfgs is the volume of one FGS, and qw is the
density of water. mfgs was taken equal to 8.178 3 10216 g for a
1 lm2 FGS area, assuming an area of a carbon hexagon of
5.239 3 1028 lm2 and a C/O ratio of 18. Vfgs is 7 3 1024 lm3

assuming an area of 1 lm2 and a thickness of 0.7 nm. Even
though it is hard to calculate the exact thickness of FGS, XRD
data show that the interlayer spacing of graphite oxide increases
to 0.7 nm during the oxidation of graphite.73 The average values
for Rg and q calculated for our clusters are included in Support-
ing Information Appendix D (Figures S2 and S3).

We note that our goal is not to model the simultaneous
aggregation and sedimentation processes. There are modeling
and experimental efforts that have focused on this challenging
problem.78,79 Our approach is to ignore sedimentation first
during the aggregation process and to simply evaluate a sedi-
mentation metric that would tell us how prone to sedimenta-
tion clusters and particles are.

The cluster-Peg metric helped us correlate our simulation
data to the UV-Vis absorbance data of Figure 2 where we see
that the supernatant becomes highly transparent around Ccrit.
Below that concentration, the supernatant becomes transparent
at a slower rate and above Ccrit the absorbance does not
decrease significantly throughout a year. Experimentally, per-
sisting high UV-Vis absorbance values of the supernatant indi-
cate very slow sedimentation or no sedimentation with time.
This can happen (1) when a contiguous connected particle net-
work, for example, a gel structure or (2) dispersed particles or
dispersed ramified particle clusters with a low enough Peclet
number form. In the first case, while strong gels can resist sed-
imentation, they can densify with time, shrink, and sediment.
In the second case, dispersed ramified clusters may also
restructure with time, densify, and sediment at a faster rate as
their Peclet number increases and single particles may form
dense clusters later on. Thus, while high UV-Vis absorbance
corresponds to systems that resist sedimentation either due to
the formation of a contiguous network structure or dispersed
low Peg particles/clusters, low UV-Vis absorbance values
relate to dense aggregate systems.

A metric that is useful for a comparison of our results with
the absorbance data of Figure 2 is the percentage of particles
that belong to clusters with a Peg number higher than 1. Those
are the clusters that would tend to sediment because of the rel-
ative high gravimetric forces that they experience. In Figure 7,
we present how this metric varies with simulation time and
surfactant concentration. The higher the percentage of par-
ticles that belong to high Peg clusters, the higher the percent-
age of particles that might sediment, as long as a strong gel
that resists sedimentation is not formed.
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As we see in Figure 7, the percentage of particles associated
with clusters of high Peg decreases with increasing SDS con-
centration. At C 5 10 and 100 lM, Peg� 1 and thus sedimen-
tation is not expected in agreement with experimental data in
Figure 2. Similarly, Figure 6 shows that at 1025 and 0.1 lM
particles tend to organize in large clusters. This is an indica-
tion for the formation of a gel network, given a large enough
particle concentration, which also prevents sedimentation of
those particles.

However, at the SDS concentration of 1 lM, there is a sig-
nificant percentage of particles with Peg> 1 that can sediment
as they do not form large clusters as in lower surfactant con-
centrations. The average size of clusters formed for the time
scale of our simulations remains below 10 particles per cluster.
This means that, for SDS concentrations around 1 lM a gel is
not formed for the time scale of our simulation and the number
of clusters with high Peg that are formed will be free to sedi-
ment. This observation also agrees with the data from Figure 2
that show a decrease in UV-Vis absorbance around the critical
surfactant concentration.

For C 5 1 lM, we also see that the rate of formation of clus-
ters that can sediment is much lower than for lower surfactant
concentrations but it is non-zero. The entire length of our sim-
ulation (15 million steps) corresponds to about 1.5 min
(according to the approximate calculation shown in Support-
ing Information Appendix C) and an average of 30% of par-
ticles belongs to clusters that can sediment. Comparing that
with Figure 2 the green line shows that a significant percent-
age of particles will sediment in 1 h at Ccrit (about 10 lM for
experimental case). Our simulation might have overestimated
the rate of creation of dense clusters at Ccrit (about 1 lM for

our simulation), since 1 h of real time corresponds to 631 mil-
lion simulation steps; But, we cannot be entirely sure since no

results were collected for smaller times (except right after

dispersion).
A more appropriate metric for gelation would be the gravi-

metric Peclet number as defined by Poon and Haw80, if the

right critical value were known for our system. A critical

gravimetric Peclet value below which gelation occurs was cal-
culated by Kim et al.81 for the case of adhesive spheres but not

for our case of linear particles that experience attractive and

repulsive forces.
Combining the cluster size information of Figure 6 and a

sedimentation analysis of the percentage of particles based on

Peg, we have addressed the low absorbance values for Ccrit in
Figure 2 at a given time; but, we have not yet addresesed the

drop in absorbance with time for C<Ccrit. In order to address

this slow sedimentation behavior that occurs at lower surfac-
tant concentrations, we will now consider a local densification

through restructuring in the next subsection.

Densification through restructuring

To investigate the local density of the particle clusters with
time, we introduce a new metric: the average angle formed

between neighboring particles. This presents the mean of the

angle formed between each pair of directly neighboring particles
within each cluster (i.e., particles that are in contact with each

other). An angle difference of 908 indicates vertically oriented
neighboring particles, while an angle difference of 0 indicates

parallel neighboring particles. Clusters with lower average angle

difference consist of particles that are on average closer to each
other tending towards a layered and thus denser structure. This

gives us a better idea of the local density of the clusters as it

indicates how close neighboring particles are to each other.
Figure 8 shows how the average angle varies with time for

different surfactant concentrations. First important observation

is that the average angle of the neighboring particles increases

with surfactant concentration. This is a result of the nonlinear
relation between Eagg and Pagg as expressed in Eq. 1. Generally,

Eagg increases with increasing surfactant concentration because
of the ws term that appears in Eq. 3. This translates to different

Pagg distributions as a function of average angle of neighboring

particles for each surfactant concentration. The result is a lower
probability for neighboring particles to form small angles as the

surfactant concentration (and therefore the intensity of repulsive

forces) increases. This behavior is observed even for really low
times as we start with a well-dispersed system and there are no

pre-existing clusters that would affect our results.
Another observation from Figure 8 is that for surfactant

concentrations below 1 lM, there is a clear continuous drop of
average angle difference with time indicating densification

through restacking, while there is no clear indication of reduc-
tion of this metric with time for surfactant concentrations

above 1 lM. We attribute this drop to a sampling of more

states between clustered particles. When a particle deaggre-
gates from the interior of a large cluster there is a larger

chance that this particle will collide again with the same clus-

ter and reaggregate with it in a different angle. Overall,
smaller angles have higher Utotal due to larger area interactions

and, as we see from Figure 3, this leads to higher Eagg and to

lower deaggregation probabilities (as seen from Eq. 2), and,
therefore, bonds of smaller angles tend to survive longer.

This densification behavior can be correlated to the real sys-

tem. As in Figure 2, there is a clear reduction in absorbance

Figure 7. Results from simulations for different surfac-
tant concentrations with constant concentra-
tion of particles (�0.49 particles/lm2, 1000
particles in a 45 3 45 lm matrix).

These data represent the 5-point moving average of the

average values from 3 simulations with the standard

deviation of the 3 values drawn as a faded region

around each corresponding line. The vertical axis

presents the percentage of sheets that belong to clusters

with Peg that exceeds the value of 1 (i.e., gravimetric

force is more important than Brownian motion) as a

function of time. [Color figure can be viewed at wileyon-

linelibrary.com]
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and thus sedimentation with time for samples of surfactant

concentration lower than the critical surfactant concentration.

Combining the results from the current and the previous sub-

section, we can better explain the experimental results of Fig-

ure 2: At the critical concentration, a large number of high Peg

clusters is formed and those clusters sediment. Below that

SDS concentration, a gel is formed given a high enough con-

centration of particles. With time, these gels densify and tend

to form more graphite-like structures that will eventually sedi-

ment. According to Figure 2, sedimentation of particles for

low surfactant concentrations happens with a slower rate. The

reason for the difference in sedimentation rates can be attrib-

uted to the time scale difference of the two mechanisms that

produce those sedimenting clusters.

Aggregation and deaggregation rates

The aggregation and deaggregation probabilities as defined

in Eqs. 1 and 2 are basically the probabilities of an aggregation

or deaggregation event occurring given that a collision or a

deaggregation attempt has occurred, respectively. In order to

calculate the net aggregation rate (rn,agg) we first calculated

the aggregation rate (ragg) by multiplying the aggregation

probability with the rate of collisions and the deaggregation

rate (rdeagg) by multiplying the deaggregation probability with

the rate of deaggregation attempts. rn,agg is the difference

between ragg and rdeagg

rn;agg5ragg2rdeagg5

5Paggrcollision2Pdeaggrdeagg;att (12)

where Pagg and Pdeagg are the average values of the probabili-

ties defined in Eqs. 1 and 2. rcollision is the rate of imminent

collisions (this includes potential collisions that did not happen

because the aggregation barrier was not crossed), and rdeagg,att

the rate of deaggregation attempts, that is, the rate at which a

particle will be tested for deaggregation with its neighbors

(equivalent to rate of collisions for aggregation). As we men-

tioned in the Model and Application section, in each step, we

pick a particle at random for deaggregation and if this particle

is part of a cluster we attempt to deaggregate it from its neigh-

bors. Therefore, the rate of deaggregation attempts, rdeagg,att is

equal to the percentage of particles that belong to clusters (i.e.,

particles that are not single).
In Figure 9, we present how the average aggregation and

deaggregation rates change with time and surfactant concen-

tration. Figure 9a shows the values of ragg. As expected from

Figure 6, the higher the value of surfactant concentration the

lower the value of ragg. For low surfactant concentrations, we

observe a decrease of ragg with time, while for high surfactant

concentrations, it remains almost constant. The decrease for

low C can be attributed to the fact that fewer free particles

remain in the matrix with higher relative distances from each

other, which causes a decrease in collision rate. This makes

aggregation events more rare with time. This phenomenon is

not observed for high C as the size of the clusters does not

change significantly with time. The initial jump we see in ragg

for all surfactant concentrations can be attributed to an averag-

ing starting with values of zero at zero-time step. In the cases

of C 5 1025 and 0.1 lM, the initial increase is accompanied

by a fast decrease for times below the millionth-time step.

This is again due to the increase in cluster size which happens

at a high rate at these concentrations and times.
Figure 9b shows rdeagg, which follows a similar trend to

ragg. For low C, we see a decrease of rdeagg with time, while

for high C, rdeagg remains relatively constant with time. This

decrease in the rate of deaggregation events can be attributed

to a decrease in the deaggregation probability. The larger the

clusters the larger the percentage of particles that are in the

interior of those clusters. Particles that are in the interior of

the clusters have a larger number of neighbors and thus a

lower probability to deaggregate. The initial increase in rdeagg

that is observed for all surfactant concentrations is real (as

opposed to the one observed in Figure 9a) and is caused by the

Figure 8. Results from simulations for different surfac-
tant concentrations with constant concentra-
tion of particles (�0.49 particles/lm2, 1000
particles in a 45 3 45 lm matrix).

The vertical axis presents the average angle difference

between neighboring aggregated particles as a function

of time. The dark gray region indicates the aggregated

state and the light gray region marks the dispersed state.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. (a) Rate of aggregation calculated using the
variables shown in Eq. (12).

(b): Rate of deaggregation as calculated by the variables

in Eq. 12. These data represent the 5-point moving aver-

age of the average values from 3 simulations. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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fact that we start with a dispersed system and the existence of

clusters is a prerequisite for deaggregation to occur.
An aggregation event is not necessarily equivalent to a

deaggregation event. An aggregation event is the result of the

collision of two particles (that might be single particles or part

of a cluster) that merge into one cluster. A deaggregation

event is a result of a succesful deaggregation attempt between

a particle that belongs to a cluster and all its direct neighbors.

This means that a deaggregation event results in the separation

of a cluster in two or more clusters, while an aggregation event

always merges two clusters/particles into one. Therefore, we

expect ragg to maintain higher values than rdeagg even during

equilibrium.
Further, even though rdeagg has higher values for lower C,

this does not mean that the large clusters formed at these sur-

factant concentrations are more dynamic than the ones for

high C. One metric that can help us quantify the dynamic

nature of the clusters formed in our model is the average clus-

ter lifetime (sc)

sc5
�s

rdeagg

(13)

where �s is the average cluster size. This value approximates

the time for an average cluster (in each surfactant concentra-

tion and time) to deaggregate completely.
Figure 10 shows how the average cluster lifetime changes

with time and surfactant concentration. For low C, the lifetime

of the clusters is high and is getting larger as their size grows.

For high surfactant concentration, their size remains low with

time. This indicates that the small clusters formed at these sur-

factant concentrations are very dynamic comparing to the

large clusters formed at lower C. The initial drop in the value

of lifetime is caused by the initial increase in deaggregation

rates observed in Figure 9.

At C 5 1 lM, Figure 10 reveals an interesting behavior: At

initial times, as the clusters remain small they are more

dynamic than the clusters formed at high C. As the cluster size

grows their lifetime exceeds the lifetime of clusters formed at

higher C. The fact that clusters appear more dynamic at C 5 1

lM than at higher C is not necessarily representative of the

physical reality but is indicative of how our model works, that

is, allowing restructuring of the clusters through continuous

deaggregations and reaggregations. In real systems, a lot of

this restructuring happens by bending82 of graphene particles

and their relative movement to each other without deaggrega-

tion really occurring.
Overall, none of our simulations has reached equilibrium.

For low surfactant concentrations ragg and rdeagg are decreas-

ing continuously (Figure 9) and the relative angles of neigh-

boring particles are also decreasing (Figure 8). For lower

surfactant concentrations, the size of the clusters is increasing

(Figure 6), although slowly. Nevertheless, from Figure 10 we

conclude that the small clusters that are created at high surfac-

tant concentrations have a very short life time, are very

dynamic, and they do not grow further as they never go

beyond an embryonic cluster stage. Embryo clusters are

expected to form even in thermodynamically stable dispersed

colloidal suspensions due to random fluctuations in our system

that can be explained by statistical mechanics.77

Finally, we expect the initial concentration of particles to

have an effect on the aggregation and the deaggregation rates.

More specifically, a lower initial particle concentration would

lead to lower aggregation rates due to the larger initial distan-

ces between the particles. This lower aggregation rate also

leads to lower deaggregation rates because the rate of deaggre-

gation attempts is proportional to the number of aggregated

particles, as mentioned earlier. Overall, we do not expect the

initial particle concentration to have an effect on the behavior

of the system, other than reducing the overall size of the clus-

ters (due to the reduced number of available particles) and

reducing both the aggregation and deaggregation rates.

Conclusions

This is the first reversible aggregation model for non-linear

particles and it can help in building intuition on problems

about graphene-like or other atomically thin particle aggrega-

tion or needle(rod)-like particles aggregation that move on the

same 2-D plane (e.g., an interface).
Both the experiments and the simulations give us similar

trends related to the particle cluster size, an indication for the

existence of a critical concentration of surfactant at which

many dense clusters are formed, an indication for the forma-

tion of a gel below that concentration which tends towards a

graphite-like structure with time and mostly dispersed single

particles above the critical surfactant concentration.
One point of disagreement between experiments and simu-

lations is the actual value of the critical surfactant concentra-

tion: the experiments indicate that this value is about 10 lM of

SDS while the simulations point towards a value in the order

of 1 lM. A quantitative disagreement is something that was

expected based on the number and weight of our assumptions

and especially since our simulations are performed in 2D. At

C>Ccrit, our model captures the state of a thermodynamically

stable colloidal dispersion well with the formation of embry-

onic clusters with very short life times that never reach the sta-

ble cluster (nucleus) size.

Figure 10. Change of the average cluster lifetime as
calculated by Eq. 13.

These data represent the 5-point moving average of

the average values from 3 simulations with the stan-

dard deviation of the 3 values drawn as a faded region

around each corresponding line. [Color figure can be

viewed at wileyonlinelibrary.com]
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The assumption that probably had the largest effect on our
results is the rigid nature of graphene. In reality, we know that
graphene particles that come in touch with each other find a
favorable position really fast as the particles are able to fold
and bend to get to more energetically favorable positions.
What we do instead is to sample different energetic states by
allowing deaggregation and reaggregation of the particles.
This is something that we expect to have a significant effect
on the time scales of the results generated by our RCA model.

Our approach ignored the effect of flow since it was not rel-
evant to the modeled experiments; but, flow effects can be
incorporated in our algorithm by altering the diffusion step
size and probability of moving in different directions for each
step.
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